Ненасыщенные жирные кислоты. Функции ненасыщенных жирных кислот в питании человека


Жирные кислоты организмом не вырабатываются, но они необходимы для нас, так как от них зависит важная функция организма – обменный процесс. При недостатке этих кислот начинается преждевременное старение организма, нарушается костная ткань, возникают заболевания кожи, печени и почек. Эти кислоты поступают в организм с пищей и являются важным источником энергии для любого организма. Поэтому они названы незаменимыми (НЖК). Количество незаменимых жирных кислот (НЖК) в нашем организме зависит от того, сколько жиров и масел мы съедаем.


НЖК занимают большую часть в составе защитной оболочки или мембраны, окружающей любую клетку тела. Они используются для образования жира, который покрывает и защищает внутренние органы. Расщепляясь, НЖК выделяют энергию. Жировые прослойки под кожей смягчают удары.
Насыщенные жирные кислоты - некоторые жирные кислоты "насыщены", т.е. насыщены столькими атомами водорода, сколько могут присоединить. Эти жирные кислоты увеличивают уровень холестерина в крови. Содержащие их жиры при комнатной температуре остаются твердыми (например, жир говядины, топленый свиной жир и сливочное масло).


В твердых жирах много стеариновой кислоты, в больших количествах присутствующей в говядине и свинине.
Пальмитиновая кислота тоже кислота насыщенная, но она содержится в маслах тропических растений - кокосовом и пальмовом. Хотя эти масла растительного происхождения, в них очень много совсем неполезных для здоровья насыщенных кислот.
В нашем питании нужно уменьшить содержание всех насыщенных жиров. Они вызывают сужение артерий и нарушают нормальную гормональную активность.


Здоровье во многом зависит от состояния сосудов. Если сосуды закупорены, возможны печальные последствия. При атеросклерозе стенки сосудов весьма неэффективно восстанавливаются самим организмом, появляются жировые бляшки – сосуды закупориваются. Такая ситуация опасна для организма – если закупорились сосуды, по которым кровь поступает к сердцу – возможен инфаркт, если закупорились сосуды головного мозга – инсульт. Что же делать, чтобы сосуды не засорялись.


Полиненасыщенные жирные кислоты (ПНЖК) - жирные кислоты, содержащие две или больше двойных связей, с общим числом углерода от 18 до 24. Они уменьшают количество холестерина в крови, но могут ухудшить соотношение ЛВП и ЛНП.


ЛВП –липопротеиды высокой плотности
ЛНП – липопротеиды низкой плотности
ЛВП-липопротеин высокой плотности, жироподобное вещество в крови, которое помогает предотвращать отложение холестерина на стенках артерий.
ЛНП - липопротеин низкой плотности, тип жироподобного вещества в крови, которое переносит с кровотоком холестериновые бляшки. Избыток этого вещества может привести к холестериновым отложениям на внутренних стенках артерий.


Нормальным соотношением ЛНП и ЛВП считается 5:1. В этом случае ЛВП должны хорошо поработать, чтобы избавить организм от холестерина. Слишком большое содержание полиненасыщенных жиров может нарушать это неустойчивое равновесие. Чем больше мы потребляем полиненасыщенных жиров, тем больше нам нужно вводить в диету витамина Е, так как в клетках нашего организма витамин Е действует как антиоксидант и предохраняет эти жиры от окисления.


Первоначально к незаменимым полиненасыщенным жирным кислотам относили только линолевую кислоту, а теперь ещё и арахидоновую.
Полиненасыщенные жирные кислоты являются компонентами многих клеточных структур организма, прежде всего мембран. Мембраны – это вязкие, но тем не менее пластичные структуры, окружающие все живые клетки. Отсутствие какого-то мембранного компонента приводит к различным заболеваниям.
Дефицит этих кислот связан с развитием таких заболеваний как кистозный фиброз, различные заболевания кожи, печени, атеросклероз, ишемическая болезнь сердца, инфаркт миокарда, тромбоз сосудов и их повышенная хрупкость, инсульты. Функциональная роль полиненасыщенных жирных кислот заключается в нормализации деятельности всех мембранных структур клеток и внутриклеточной передачи информации.


Линолевая кислота в наибольшей концентрации содержится во льне, сое, грецких орехах, входит в состав многих растительных масел и животных жиров. Сафлоровое масло - самый богатый источник линолевой кислоты. Линолевая кислота способствует расслаблению кровеносных сосудов, уменьшает воспаления, облегчает боль, способствует заживлению, улучшает ток крови. Признаки нехватки линолевой кислоты – заболевания кожи, печени, выпадение волос, расстройство нервной системы, заболевания сердца и задержка роста. В организме линолевая кислота может превращаться в гамма-линолевую кислоту (ГЛК), которая встречается в природе, например, в грудном молоке, в масле из энотеры и бурачника (огуречной травы) или же в масле из лапчатки и семян черной смородины. Установлено, что гамма-линолевая кислота помогает при аллергической экземе и сильных болях в груди. Препараты с маслом энотеры и другими маслами, богатыми ГЛК, принимают для лечения сухой кожи и поддержания здорового состояния жировых мембран, окружающих клетки кожи.


Питание продуктами с низким содержанием жира или не содержащими никаких источников линолевой кислоты может вызвать серьезные проблемы со здоровьем.


Арахидоновая кислота способствует работе мозга, сердца, нервной системы, при недостатке её организм оказывается беззащитным против любой инфекции или заболеванием, возникает артериальное давление, разбалансирование выработки гормонов, неустойчивость настроения, вымывание кальция из костей в кровь, медленное заживление ран. Она содержится в свином сале, сливочном масле, в рыбьем жире. Арахидоновую кислоту растительные масла не содержат, незначительное количество её в животном жире. Наиболее богаты арахидоновой кислотой рыбий жир 1 -4% (тресковый), а также надпочечники, поджелудочная железа и головной мозг млекопитающих. Какова же функциональная роль этой кислоты? Кроме нормализации деятельности всех мембранных структур клеток, арахидоновая кислота является предшественником образующихся из неё важных биорегуляторов - эйкозаноидов. «Эйкоза» - число 20 – столько атомов углерода в молекулах. Эти биорегуляторы принимают участие в различных реакциях крови, влияют на состояние кровеносных сосудов, регулируют межклеточные взаимодействия и выполняют ряд других важных функций в организме.


Среднесуточная потребность в полиненасыщенных жирных кислотах составляет 5-6г. Эту потребность можно восполнить употреблением растительного масла30г в день. Судя по имеющимся источникам пищевых продуктов, арахидоновая кислота является самой дефицитной.
Поэтому с целью профилактики и лечения некоторых заболеваний, связанных с дефицитом этих кислот, разработано несколько эффективных препаратов на основе природного сырья.


Мононенасыщенные жирные кислоты - жирные кислоты, содержащие одну двойную связь. Они оказывают действие, понижающее содержание холестерина в кровотоке, и помогают сохранять нужное соотношение между ЛВП и ЛНП.
Наиболее важной мононенасыщенной жирной кислотой для нашего питания является олеиновая кислота. Она присутствует в мембранах клеток растений и животных и способствует эластичности артерий и кожи.


Олеиновая кислота играет важную роль в понижении уровня холестерина, укрепляет иммунитет, предотвращает возникновение опухолей. Особенно большая концентрация этой кислоты в оливковом масле холодного отжима, в кунжутном масле, в миндале, арахисе, грецких орехах.
Мононенасыщенные жиры при высоких температурах стабильны (поэтому для жарки очень подходит оливковое масло), и они не нарушают равновесие ЛНП и ЛВП так, как это могут делать полиненасыщенные жиры.


В странах Средиземноморья, где в пищу употребляют большие количества оливкового масла, оливок и маслин, авокадо и орехов, намного реже встречаются случаи болезни коронарных сосудов сердца и раковых заболеваний. В большой степени это относят на счет мононенасыщенных жиров, присутствующих во всех этих пищевых продуктах.


Из всего сказанного можно сделать вывод, что на протекание отдельных заболеваний представляется возможным воздействовать с помощью не только лекарств, но и специальных диет.


А эти два видео расскажут, как приготовить ролы с лососем.



Отправить в морозилку


Жиры чрезвычайно важны для здоровья, вот почему человек должен употреблять некоторое количество жиров каждый день, чтобы все процессы организма работали правильно. Жиры — это необходимый нутриент для усвоения жирорастворимых витаминов (A, D, E, K) и плотный источник энергии.

Кроме того, жиры в рационе способствуют росту, работе мозга и нервной системы, здоровью кожи, защите костной системы, тепловой защите, а также играют роль подушки безопасности для внутренних органов.

Однако не все жиры одинаково полезны для здоровья. Все продукты, имеющие в составе жиры, одержат разные комбинации насыщенных, мононенасыщенных и полиненасыщенных жиров.

Академия питания и диетологии рекомендует здоровым взрослым употреблять жиры в соотношении 20-35 процентов от общего суточного потребления калорий. Также рекомендуется увеличить потребление полиненасыщенных жирных кислот и сократить насыщенные и транс-жиры.

Все жиры дают 9 калорий на грамм, но в зависимости от их вида — будет ли это форма концентрированного растительного масла или твердая — меняется содержание калорий на столовую ложку. В среднем, в одной столовой ложке растительного масла содержится 120 калорий.

Независимо от того, в каком виде ты их употребляешь — в жидком (растительное масло) или твердом (маргарин) — организм расщепляет их на жирные кислоты и глицерин. Из этих составных частей организм образует другие липиды, запасая остаток в виде триглицеридов.

Однако что же в действительности означают эти рекомендации? Как отличить насыщенные, транс-жиры или ненасыщенные жиры?

Жиры могут быть насыщенными либо ненасыщенными, в зависимости от того, сколько атомов водорода вступает в связи с каждым атомом углерода в их химических цепочках.

Чем больше водорода прикрепляется к цепочке, тем более насыщенными будут являться жиры. Если те или иные атомы водорода будут отсутствовать, жирная кислота будет считаться ненасыщенной.

Насыщенные жиры в питании

Насыщенные жиры — это жирные кислоты, содержащие атомы водорода во всех звеньях своей химической цепочки. Они связаны с выработкой в печени большего количества общего холестерина и ЛНП холестерина.

Однако в последнее время ученые пересмотрели свою позицию по поводу того, все ли насыщенные жиры одинаково вредны:

Такие насыщенные жиры, как пальмитиновая кислота или стеариновая кислота, по-видимому, оказывают совсем иное воздействие на ЛНП холестерин, циркулирующий в крови.

Некоторые задаются вопросом: достаточно ли было проведено исследований для определения того, приносят ли диеты, ограничивающие употребление насыщенных жиров, пользу либо уменьшают риск возникновения сердечно-сосудистых заболеваний.

Необходимо провести больше исследований, чтобы понять влияние насыщенных жиров в рационе, однако большинство экспертов в области питания, включая Академию питания и диетологии, все еще рекомендует свести количество насыщенных жиров в питании к минимуму.

Источники насыщенных жиров:

  • сливочное масло
  • цельное молоко
  • домашняя птица
  • кокосовое масло
  • пальмовое масло

Ненасыщенные жиры в питании

Ненасыщенные жиры разделяются на две категории — мононенасыщенные и полиненасыщенные. Эти типы жиров считаются более полезными, чем насыщенные или транс-жиры.

Мононенасыщенные жирные кислоты (МНЖК) — это жирные кислоты, в химических цепочках которых отсутствует одна водородная пара. Они связаны с понижением ЛНП холестерина, общего холестерина и одновременно с повышением выработки ЛВП — «хорошего» — холестерина. В нормальном состоянии эти жиры являются жидкими при комнатной температуре.

Источники мононенасыщенных жирных кислот:

  • подсолнечное масло
  • каноловое масло
  • оливковое масло
  • арахисовое масло
  • лесной орех (фундук)
  • орех макадамия
  • авокадо

В полиненасыщенных жирных кислотах (ПНЖК) отсутствует по 2 или больше водородным пар на цепочках жирной кислоты. Они вызывают снижение холестерина крови / сыворотки, а также понижают выработку ЛНП.

Однако, как оказалось, они также способны понижать выработку ЛВП. Эти жиры обычно представляют собой жидкость при комнатной температуре.

Источники полиненасыщенных жирных кислот:

  • льняное масло
  • кукурузное масло
  • кунжутное масло
  • семена подсолнечника и подсолнечное масло
  • жирная рыба, например, лосось
  • грецкие орехи

Некоторые определенные полиненасыщенные жирные кислоты с другой структурой, несущие пользу для здоровья, включают омега-3 и омега-6 жирные кислоты.

Эти жиры считаются особенно полезными для здоровья, потому что они связаны с улучшением иммунной системы, лечением ревматоидного артрита, улучшением зрения, функции мозга и здоровья сердца.

Омега-3, как было доказано, снижают и уровень триглицеридов в организме, и общий уровень холестерина. Рекомендуется часто употреблять продукты, богатые омега-3.

Источники омега-3:

  • морепродукты — жирная рыба: макрель, длинноперый тунец, сардина, лосось, озерная форель
  • льняное масло
  • грецкие орехи
  • соевое масло
  • каноловое масло

Омега-6 жирные кислоты, содержащиеся в растительных маслах, также являются ПНЖК. Они тоже связаны со снижением риска возникновения сердечно-сосудистых заболеваний путем понижения уровня ЛНП холестерина. Однако они могут одновременно понизить уровень ЛВП.

Источники омега-6:

  • большинство растительных масел
  • семена подсолнечника
  • кедровые орехи

Транс-жиры в питании

Транс-жиры создаются, когда производители еды расширяют срок годности продуктов, содержащих жиры, добавляя водород к их химическому составу.

Добавление водорода делает жиры в продуктах тверже и насыщеннее, в результате чего задерживается процесс прогоркания и увеличивается свежесть.

Результатом гидрогенизации являются транс-жиры. К сожалению, транс-жиры связаны с увеличением общего холестерина и ЛНП холестерина, а также снижением ЛВП холестерина.

Небольшое количество природных транс-жиров можно найти в говядине, свинине, сливочном масле и молоке, однако эти транс-жиры имеют отличное от искусственных транс-жиров действие и не связаны с оказанием такого же эффекта на уровень холестерина.

Статью подготовила: Lily Snape

Ненасыщенные жирные кислоты – это кислоты, содержащие в углеродном скелете двойные связи.

В зависимости от степени ненасыщенности (количество двойных связей) их подразделяют на:

1. Мононенасыщенные (моноэтеноидные, моноеновые) кислоты – содержат одну двойную связь.

2. Полиненасыщенные (полиэтеноидные, полиеновые) кислоты – содержат более двух двойных связей. Некоторые авторы относят к полиеновым кислотам ненасыщенные жирные кислоты, содержащие три и более кратных (двойных) связей.

У ненасыщенных жирных кислот наблюдается геометрическая изомерия, обусловленная различием в ориентации атомов или групп относительно двойной связи. Если ацильные цепи располагаются с одной стороны от двойной связи, образуется цис- конфигурация, характерная, например, для олеиновой кислоты; если же они располагаются по разные стороны от двойной связи, то молекула находится в транс- конфигурации.


Таблица 6.3

Ненасыщенные жирные кислоты

Степень ненасыщенности Общие формулы Распространение Примеры
Моноеновые (мононена-сыщенные, моноэтеноидные) - одна двойная связь С n H 2n-1 COOH С m H 2m-2 О 2 С 1 m , C m:1 Жирная кислота, которая наиболее часто встречается в природных жирах Олеиновая (цис-9-октадеценовая) С 17 H 33 COOH, С 17 Н 33 СООН С 18 1 , С 18:1
Диеновые (диэтено-идные) – две двойные связи С n H 2n-3 COOH, С m H 2m-4 O 2 С 2 m; C m:2 Пшеница, арахис, семена хлопчатника, соя и многие растительные масла Линолевая С 17 H 31 COOH, C 18 Н 32 О 2 С 2 18; C 18:2
Триеновые (триэтеноидные – три двойные связи С n H 2 n -5 COOH, С m H 2 m -6 O 2 С 3 m; С m:3 Некоторые растения (розовое масло), минорная жирная кислота у животных Линоленовая С 17 H 29 COOH, С 18 Н 30 О 2 С 3 18; С 18:3
Тетраеновые (тетраэтеноидные) – четыре двойные связи) С n H 2 n -7 COOH, С m H 2 m -8 O 2 С 4 m; С m:4 Обнаруживается вместе с линолевой кислотой, особенно в арахисовом масле; важный компонент фосфолипидов животных Арахидоновая С 19 H 31 COOH, С 20 Н 32 О 2 С 4 20; С 20:4
Пентаеновые (пентаэтеноидные) – пять двойных связей С n H 2 n -9 COOH, С m H 2 m -10 O 2 С 5 m; С m:5 Рыбий жир, фосфолипиды мозга Эйкозапентаеновая (тимнодоновая) С 19 Н 29 СООН, С 20 Н 30 О 2 С 5 20; С 20:5 Клупанодоновая С 22:5 , С 5 20 Сокладоновая (склодоновая) С 5 24 , С 24:5 Гексокозапентаеновая С 5 26 , С 26:5


Продолжение табл. 6.3


К ненасыщенным жирным кислотам относятся оксикислоты , например рицинолевая кислота, имеющая гидроксильную группу у атома С 12:

С 21 Н 41 СООН

СН 3 – (СН 2) 7 – СН = СН – (СН 2) 11 СООН

Циклические ненасыщенные жирные кислоты

Молекулы циклических ненасыщенных кислот содержат мало реакционно-способные углеродные циклы. Характерными примерами являются гиднокарповая и хаульмугровая кислоты.

Гиднокарповая кислота СН=СН

> СН–(СН 2) 10 –СООН

СН 2 –СН 2

Хаульмугровая кислота СН = СН

> СН – (СН 2) 12 – СООН

СН 2 –СН 2

Эти кислоты входят в состав масел тропических растений, используемых для лечения проказы и туберкулеза.

Незаменимые (эссенциальные ) жирные кислоты

В 1928 году Эванс и Бэрр обнаружили, что у крыс получающих обезжиренный рацион, но содержащий витамины А и D, наблюдается замедление роста и снижение плодовитости, чешуйчатый дерматит, некроз хвоста, поражение мочевой системы. В своих работах они показали, что данный синдром можно лечить, добавляя в пищу незаменимые жирные кислоты.

Незаменимые (эссенциальные) жирные кислоты – это кислоты, которые не синтезируются организмом человека, а поступают в него с пищей. Незаменимыми кислотами являются:

Линолевая С 17 H 31 COOH (две двойные связи), С 2 18 ;

Линоленовая С 17 H 29 COOH (три двойные связи), С 3 18 ;

Арахидоновая С 19 H 31 COOH (четыре двойные связи), С 4 20 .

Линолевая и линоленовая кислоты не синтезируются в организме человека, арахидоновая – синтезируется из линолевой с помощью витамина В 6 .

Данные кислоты являются витамином F (от англ. fat – жир), входят в состав растительных масел.

У людей, в питании которых отсутствуют незаменимые жирные кислоты, развивается чешуйчатый дерматит, нарушение транспорта липидов. Для избежания этих нарушений, чтобы на долю незаменимых жирных кислот приходилось до 2 % от общей калорийности. Незаменимые жирные кислоты используются организмом в качестве предшественников биосинтеза простагландинов и лейкотриенов, участвуют в построении клеточных мембран, регулировании обмена веществ в клетках, кровяного давления, агрегации тромбоцитов, выводят из организма избыточное количество холестерина, уменьшая таким образом вероятность заболевая атеросклерозом, повышают эластичность стенок кровеносных сосудов. Наибольшей активностью обладает арахидоновая кислота, промежуточной – линолевая, активнсость линоленовой кислоты в 8–10 раз ниже линолевой кислоты.

Линолевая и арахидоновая кислоты являются w-6-кислотами,
a-линоленовая – w-3-кислотой, g-линоленовая – w-6-кислотой. Линолевая, арахидоновая и g-линоленовая кислоты входят в семейство омега-6.

Линолевая кислота входит в g-линоленовая состав многих растительных масел, содержится в пшенице, арахисе, семенах хлопчатника, сое. Арахидоновая кислота обнаруживается вместе с линолевой кислотой, особенно в арахисовом масле, является важным элементом фосфолипидов животных. a-Линоленовая кислота также обнаруживается вместе с линолевой кислотой, особенно в льняном масле,
g-линоленовая – характерна для розового масла.

Суточная потребность в линолевой кислоте 6–10 г, ее суммарное содержание в жирах пищевого рациона должно составлять не менее 4 % от общей калорийности. Для здорового организма соотношение жирных кислот должно быть сбалансированным: 10–20 % полиненасыщенных, 50–60 % мононенасыщенных и 30 % насыщенных. Для людей пожилого возраста и больных сердечно-сосудистыми заболеваниями содержание линолевой кислоты должно составлять 40 % от общего содержания жирных кислот. Соотношение полиненасыщенных и насыщенных кислот 2: 1, соотношение линолевой и линоленовой кислот 10: 1.

Для оценки способность жирных кислот обеспечивать синтез структурных компонентов клеточных мембран используется коэффициент эффективности метаболизации эссенциальных жирных кислот (КЭМ), который показывает отношение количества арахидоновой кислоты (главного представителя ненасыщенных жирных кислот в мембранных липидах) к сумме полиненасыщенных жирных кислот с 20 и 22 атомами углерода:

Простые липиды (многокомпонентные )

Простые липиды представляют собой сложные эфиры спиртов и высших жирных кислот. К ним относятся триацилглицериды (жиры), воски, стерины и стериды.

Воски

Воски – это сложные эфиры высших одноосновных жирных кислот () и первичных одноатомных высокомолекулярных спиртов (). Химически малоактивны, устойчивы к действию бактерий. Ферменты их не расщепляют.

Общая формула воска:

R 1 –O–CO–R 2 ,

где R 1 O - – остаток высокомолекулярного одноатомного первичного спирта; R 2 CO – остаток жирной кислоты, преимущественно с четным числом атомов С.

Воски широко распространены в природе. Воски образуют защитное покрытие на листьях, стеблях, плодах, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Воски образуют защитную смазку на коже, шерсти, перьях, содержатся в наружном скелете насекомых. Они являются важным компонентом воскового налета виноградной ягоды – прюина. В оболочках семян сои содержание воска 0,01 % от массы оболочки, в оболочках семян подсолнечника – 0,2 %, в оболочке риса – 0,05 %.

Характерным примером воска является пчелиный воск, содержащий спирты с 24–30 атомами С (мирициловый спирт C 30 H 61 OH), кислоты CH 3 (CH 2) n COOH, где n = 22–32, и пальмитиновую кислоту (C 30 H 61 – O–СO–C 15 H 31).

Спермацет

Примером животного воска является воск спермацет. Сырой (технический) спермацет получают из головной спермацетовой подушки кашалотов (или других зубатых китов). Сырой спермацет состоит из белых чешуйчатых кристаллов спермацета и спермацетового масла (спермоля).

Чистый спермацет представляет собой эфир цетилового спирта (C 16 H 33 OH) и пальмитиновой кислоты (С 15 Н 31 СО 2 Н). Формула чистого спермацета С 15 Н 31 СО 2 C 16 H 33 .

Спермацет применяется в медицине как компонент мазей, обладающих заживляющим действием.

Спермоль – жидкий воск, светло-желтая маслянистая жидкость, смесь жидких эфиров, содержащих олеиновую кислоту C 17 H 33 СООН и олеиновый спирт C 18 H 35 . Формула спермоля C 17 H 33 СО–О–C 18 H 35. Температура плавления жидкого спермацета 42…47 0 С, спермацетового масла – 5…6 0 С. Спермацетовое масло содержит больше ненасыщенных жирных кислот (иодное число 50–92), чем спермацет (иодное число 3–10).

Стерины и стериды

Стерины (стеролы ) – это высокомолекулярные полициклические спирты, неомыляемая фракция липидов. Представителями являются: холестерин или холестерол, оксихолестерин или оксихолестерол, дегидрохолестерин или дегидрохолестерол, 7-дегидрохолестерин или 7-дегидрохолестерол, эргостерин или эргостерол.

В основе строения стеринов лежит кольцо циклопентанпергидрофенантрена, содержащее полностью гидрированный фенантрен (три циклогексановых кольца) и циклопентан.

Стериды – сложные эфиры стеринов – являются омыляемой фракцией.

Стероиды – это биологически активные вещества, основой строения которых являются стерины.

В ХУП веке из желчных камней был впервые выделен холестерин (от греч. сhole – желчь).

СН 3 CH - СН 2 - СН 2 – СН 2 - CH




Он содержится в нервной ткани, мозге, печени, является предшественником биологически активных соединений стероидов (например: желчных кислот, стероидных гормонов, витаминов группы D) и биоизолятором, защищающим структуры нервных клеток от электрического заряда нервных импульсов. Холестерин в организме находится в свободной (90 %) форме и в виде эфиров. Имеет эндо- и экзогенную природу. Эндогенный холестерин синтезируется в организме человека (70–80 % холестерина синтезируется в печени и других тканях). Экзогенный холестерин – это холестерин, поступающий с пищей.

Избыток холестерина вызывает появление атеросклеротических бляшек на стенках артерий (атеросклероз). Нормальный уровень
200 мг холестерина на 100 мл крови. При повышении уровня холестерина в крови возникает опасность заболевания атеросклерозом.

Суточное потребление холестерина с пищей не должно превышать 0,5 г.

Большее количество холестерина содержится в яйцах, сливочном масле, субпродуктах. У рыб высокое содержание холестерина обнаружено в икре (290–2200 мг/100 г) и молоках (250–320 мг/100 г).

Жиры (ТАГ, триацилглицериды )

Жиры представляют собой сложные эфиры глицерина и высших жирных кислот, являются омыляемой фракцией.

Общая формула ТАГ:

CH 2 – O – CO – R 1

CH – O – CO – R 2

CH 2 – O – CO – R 3 ,

где R 1 , R 2 , R 3 – остатки насыщенных и ненасыщенных жирных кислот.

В зависимости от состава жирных кислот ТАГ бывают простыми (имеют одинаковые остатки жирных кислот) и смешанными (имеют разные остатки жирных кислот). Природные жиры и масла содержат в основном смешанные ТАГ.

Жиры подразделяются на твердые и жидкие. Твердые жиры содержат насыщенные карбоновые кислоты, к ним относятся животные жиры. Жидкие жиры содержат ненасыщенные кислоты, к ним относятся растительные масла, рыбий жир.

Для жиров рыб характерны полиеновые жирные кислоты, имеющие линейную цепь и содержащие 4–6 двойных связей.

Высокая биологическая ценность рыбьего жира определяется тем, что рыбий жир содержит:

Биологически активные полиеновые жирные кислоты (докозагексаеновая, эйкозапентаеновая). Полиеновые кислоты уменьшают риск возникновения тромбоза, атеросклероза;

Витамин А;

Витамин Д;

Витамин Е;

Микроэлемент селен.

Жиры рыб подразделяются на низковитаминные и высоковитаминные. В низковитаминных рыбьих жирах содержание витамина А меньше 2000 МЕ в 1 г., в высоковитаминных – превышает 2000 МЕ в 1 г. Кроме того, промышленным способом вырабатывают концентраты витамина А – жиры, в которых содержание витамина А > 10 4 МЕ
в 1 г.

Показатели качества жиров

Для оценки качества жиров используются следующие физико-химические константы.

1. Кислотное число.

Характерным свойством жиров является их способность к гидролизу. Продуктами гидролиза являются свободные жирные кислоты, глицерин, моноацилглицериды и диацилглицериды.

Ферментативный гидролиз жиров протекает с участием липазы. Это обратимый процесс. Для оценки степени гидролиза и количества свободных жирных кислот определяют кислотное число.

Кислотноечисло – это количество миллиграммов КОН, идущее на нейтрализацию всех свободных жирных кислот, которые содержатся в 1 г жира. Чем больше кислотное число, тем выше содержание свободных жирных кислот, тем интенсивнее идет процесс гидролиза. Кислотное число возрастает при хранении жира, т. е. является показателем гидролитической порчи.

Кислотное число медицинского жира должно быть не более 2,2, витаминизированного жира, предназначенного для ветеринарных целей, – не более 3, пищевого жира – 2,5.

2. Пероксидное число

Пероксидное число характеризует процесс окислительной порчи жиров, в результате которой образуются пероксиды.

Пероксидное число определяется количеством граммов иода, выделенным из иодида калия в присутствии ледяной уксусной кислоты, выделяя из него I 2 ; образование свободного йода фиксируется с помощью крахмального клейстера:

ROOH + 2KI + H 2 O = 2KOH + I 2 + ROH.

Для повышения чувствительности исследования определение пероксидного числа проводят в кислой среде, действуя на пероксиды не иодистым калием, а иодистоводородной кислотой, образующейся из иодида калия при воздействии кислоты:

KI + CH 3 COOH = HI + CH 3 COOK

ROOH + 2HI = I 2 + H 2 O + ROH

Выделившийся иод немедленно оттитровывают раствором тиосульфата натрия.

3. Водородное число

Водородное число, так же, как и иодное, является показателем степени ненасыщенности жирных кислот.

Водородное число – количество миллиграммов водорода, необходимое для насыщения 100 г исследуемого жира.

4. Число омыления

Число омыления – это количество миллиграммов КОН, необходимое для нейтрализации всех свободных и связанных кислот, содержащихся в 1 г жира:

CH 2 OCOR 1 CH 2 - OH

CHOCOR 2 + 3KOH CH - OH + R 1 COOK +

CH 2 OCOR 3 CH 2 - OH

связанные жирные кислоты

R 2 COOK + R 3 COOK

RCOOH + KOH –––® RCOOK + H 2 O

свободные

жирные кислоты

Число омыления характеризует природу жира: чем меньше молярная масса ТАГ, тем больше число омыления. Число омыления характеризует среднюю молекулярную массу глицеридов и зависит от молекулярной массы жирных кислот.

Число омыления и кислотное число характеризуют степень гидролитической порчи жира. На величину числа омыления влияет содержание неомыляемых липидов.

5. Альдегидное число

Альдегидное число характеризует окислительную порчу жиров, содержание альдегидов в жире. Альдегидное число определяется фотоколориметрическим методом, основанном на взаимодействии карбонильных соединений с бензидином; определение оптической плотности проводится при длине волны 360 нм. Для построения калибровочной кривой используется коричный альдегид (b-фенилакролеин C 6 H 5 CH=CHCHO). Альдегидное число выражается в миллиграммах коричного альдегида на 100 г жира. Альдегидное число – показатель качества вяленой рыбы, а также второго этапа окислительной порчи жиров.

6. Эфирное число

Эфирное число – это количество милиграммов КОН, необходимое для нейтрализации освобождающихся при омылении эфирных связей жирных кислот (связанных жирных кислот) в 1 г жира. Эфирное число определяют по разности числа омыления и кислотного числа. Эфирное число характеризует природу жира.

(только с одинарными связями между атомами углерода), мононенасыщенными (с одной двойной связью между атомами углерода) и полиненасыщенными (с двумя и более двойными связями, находящимися, как правило, через CH 2 -группу). Они различаются по количеству углеродных атомов в цепи, а также, в случае ненасыщенных кислот, по положению, конфигурации (как правило цис-) и количеству двойных связей. Жирные кислоты можно условно поделить на низшие (до семи атомов углерода), средние (восемь - двенадцать атомов углерода) и высшие (более двенадцати атомов углерода). Исходя из исторического названия данные вещества должны быть компонентами жиров. На сегодня это не так; термин «жирные кислоты» подразумевает под собой более широкую группу веществ.

Карбоновые кислоты начиная с масляной кислоты (С 4) считаются жирными, в то время как жирные кислоты, полученные непосредственно из животных жиров, имеют в основном восемь и больше атомов углерода (каприловая кислота). Число атомов углерода в натуральных жирных кислотах в основном чётное, что обусловлено их биосинтезом с участием ацетил-кофермента А .

Большая группа жирных кислот (более 400 различных структур, хотя только 10-12 распространены) находятся в растительных маслах семян. Наблюдается высокое процентное содержание редких жирных кислот в семенах определённых семейств растений.

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2P i + H + + АМФ

Синтез

Циркуляция

Пищеварение и всасывание

Коротко- и среднецепочечные жирные кислоты всасываются напрямую в кровь через капилляры кишечного тракта и проходят через воротную вену , как и другие питательные вещества. Более длинноцепочечные слишком велики, чтобы проникнуть напрямую через маленькие капилляры кишечника. Вместо этого они поглощаются жирными стенками ворсинок кишечника и заново синтезируются в триглицериды . Триглицериды покрываются холестерином и белками с образованием хиломикрона . Внутри ворсинки хиломикрон попадает в лимфатические сосуды , так называемый млечный капилляр, где поглощается большими лимфатическими сосудами. Он транспортируется по лимфатической системе вплоть до места, близкого к сердцу, где кровеносные артерии и вены наибольшие. Грудной канал освобождает хиломикрон в кровоток посредством подключичной вены. Таким образом триглицериды транспортируются в места, где в них нуждаются.

Виды существования в организме

Жирные кислоты существуют в различных формах на различных стадиях циркуляции в крови. Они поглощаются в кишечнике, образуя хиломикроны, но в то же время они существуют в виде липопротеинов очень низкой плотности или липопротеинов низкой плотности после превращений в печени. При выделении из адипоцитов жирные кислоты поступают в свободном виде в кровь.

Кислотность

Кислоты с коротким углеводородным хвостом, такие как муравьиная и уксусная кислоты, полностью смешиваются с водой и диссоциируют с образованием достаточно кислых растворов (pK a 3.77 и 4.76, соответственно). Жирные кислоты с более длинным хвостом незначительно отличаются по кислотности. Например, нонановая кислота имеет pK a 4.96. Однако с увеличением длины хвоста растворимость жирных кислот в воде уменьшается очень быстро, в результате чего эти кислоты мало изменяют раствора. Значение величин pK a для данных кислот приобретает значение лишь в реакциях, в которые эти кислоты способны вступить. Кислоты, нерастворимые в воде, могут быть растворены в тёплом этаноле , и оттитрованы раствором гидроксида натрия , используя фенолфталеин , в качестве индикатора до бледнорозового цвета. Такой анализ позволяет определить содержание жирных кислот в порции триглицеридов после гидролиза .

Реакции жирных кислот

Жирные кислоты реагируют так же, как и другие карбоновые кислоты , что подразумевает этерификацию и кислотные реакции. Восстановление жирных кислот приводит к жирным спиртам . Ненасыщенные жирные кислоты также могут вступать в реакции присоединения ; наиболее характерно гидрирование , которое используется для превращения растительных жиров в маргарин . В результате частичного гидрирования ненасыщенных жирных кислот цис-изомеры, характерные для природных жиров, могут перейти в транс-форму. В реакции Варрентраппа ненасыщенные жиры могут быть расщеплены в расплавленной щёлочи. Эта реакция имеет значение для определения структуры ненасыщенных жирных кислот.

Автоокисление и прогоркание

Жирные кислоты при комнатной температуре подвергаются автоокислению и прогорканию . При этом они разлагаются на углеводороды , кетоны , альдегиды и небольшое количество эпоксидов и спиртов . Тяжёлые металлы , содержащиеся в небольших количествах в жирах и маслах, ускоряют автоокисление. Чтобы избежать этого, жиры и масла часто обрабатываются хелатирующими агентами , такими как лимонная кислота .

Применение

Натриевые и калиевые соли высших жирных кислот являются эффективными ПАВ и используются в качестве мыл . В пищевой промышленности жирные кислоты зарегистрированы в качестве пищевой добавки E570 , как стабилизатор пены, глазирователь и пеногаситель.

Разветвлённые жирные кислоты

Разветвлённые карбоновые кислоты липидов обычно не относятся к собственно жирным кислотам, но рассматриваются как их метилированные производные. Метилированные по предпоследнему атому углерода (изо -жирные кислоты) и по третьему от конца цепи (антеизо -жирные кислоты) входят в качестве минорных компонент в состав липидов бактерий и животных.

Разветвленные карбоновые кислоты также входят в состав эфирных масел некоторых растений: так, например, в эфирном масле валерианы содержится изовалериановая кислота:

Основные жирные кислоты

Насыщенные жирные кислоты

Общая формула: C n H 2n+1 COOH или CH 3 -(CH 2) n -COOH

Тривиальное название Брутто формула Нахождение Т.пл. pKa
Масляная кислота Бутановая кислота C 3 H 7 COOH CH 3 (CH 2) 2 COOH Сливочное масло, древесный уксус −8 °C
Капроновая кислота Гексановая кислота C 5 H 11 COOH CH 3 (CH 2) 4 COOH Нефть −4 °C 4,85
Каприловая кислота Октановая кислота C 7 H 15 COOH CH 3 (CH 2) 6 COOH 17 °C 4,89
Пеларгоновая кислота Нонановая кислота C 8 H 17 COOH CH 3 (CH 2) 7 COOH 12,5 °C 4.96
Каприновая кислота Декановая кислота C 9 H 19 COOH CH 3 (CH 2) 8 COOH Кокосовое масло 31 °C
Лауриновая кислота Додекановая кислота С 11 Н 23 СООН CH 3 (CH 2) 10 COOH 43,2 °C
Миристиновая кислота Тетрадекановая кислота С 13 Н 27 СООН CH 3 (CH 2) 12 COOH 53,9 °C
Пальмитиновая кислота Гексадекановая кислота С 15 Н 31 СООН CH 3 (CH 2) 14 COOH 62,8 °C
Маргариновая кислота Гептадекановая кислота С 16 Н 33 СООН CH 3 (CH 2) 15 COOH 61,3 °C
Стеариновая кислота Октадекановая кислота С 17 Н 35 СООН CH 3 (CH 2) 16 COOH 69,6 °C
Арахиновая кислота Эйкозановая кислота С 19 Н 39 СООН CH 3 (CH 2) 18 COOH 75,4 °C
Бегеновая кислота Докозановая кислота С 21 Н 43 СООН CH 3 (CH 2) 20 COOH
Лигноцериновая кислота Тетракозановая кислота С 23 Н 47 СООН CH 3 (CH 2) 22 COOH
Церотиновая кислота Гексакозановая кислота С 25 Н 51 СООН CH 3 (CH 2) 24 COOH
Монтановая кислота Октакозановая кислота С 27 Н 55 СООН CH 3 (CH 2) 26 COOH

Мононенасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -CH=CH-(CH 2) n -COOH (m = ω -2; n = Δ -2)

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Акриловая кислота 2-пропеновая кислота С 2 Н 3 COOH 3:1ω1 3:1Δ2 СН 2 =СН-СООН
Метакриловая кислота 2-метил-2-пропеновая кислота С 3 Н 5 OOH 4:1ω1 3:1Δ2 СН 2 =С(СН 3)-СООН
Кротоновая кислота 2-бутеновая кислота С 3 Н 5 СOOH 4:1ω2 4:1Δ2 СН 2 -СН=СН-СООН
Винилуксусная кислота 3-бутеновая кислота С 3 Н 6 СOOH 4:1ω1 4:1Δ3 СН 2 =СН-СН 2 -СООН
Лауроолеиновая кислота цис-9-додеценовая кислота С 11 Н 21 СOOH 12:1ω3 12:1Δ9 СН 3 -СН 2 -СН=СН-(СН 2) 7 -СООН
Миристоолеиновая кислота цис-9-тетрадеценовая кислота С 13 Н 25 СOOH 14:1ω5 14:1Δ9 СН 3 -(СН 2) 3 -СН=СН-(СН 2) 7 -СООН
Пальмитолеиновая кислота цис-9-гексадеценовая кислота С 15 Н 29 СOOH 16:1ω7 16:1Δ9 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 7 -СООН
Петроселиновая кислота цис-6-октадеценовая кислота С 17 Н 33 СOOH 18:1ω12 18:1Δ6 СН 3 -(СН 2) 16 -СН=СН-(СН 2) 4 -СООН
Олеиновая кислота цис-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9
Элаидиновая кислота транс-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН
Цис-вакценовая кислота цис-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11
Транс-вакценовая кислота транс-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 9 -СООН
Гадолеиновая кислота цис-9-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω11 19:1Δ9 СН 3 -(СН 2) 9 -СН=СН-(СН 2) 7 -СООН
Гондоиновая кислота цис-11-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω9 20:1Δ11 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 9 -СООН
Эруковая кислота цис-9-доказеновая кислота С 21 Н 41 СOOH 22:1ω13 22:1Δ9 СН 3 -(СН 2) 11 -СН=СН-(СН 2) 7 -СООН
Нервоновая кислота цис-15-тетракозеновая кислота С 23 Н 45 СOOH 24:1ω9 23:1Δ15 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 13 -СООН

Полиненасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -(CH=CH-(CH 2) х (СН 2)n-COOH

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с метил.конца) IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Сорбиновая кислота транс,транс-2,4-гексадиеновая кислота С 5 Н 7 COOH 6:2ω3 6:2Δ2,4 СН 3 -СН=СН-СН=СН-СООН
Линолевая кислота цис,цис-9,12-октадекадиеновая кислота С 17 Н 31 COOH 18:2ω6 18:2Δ9,12 СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН
Линоленовая кислота цис,цис,цис-6,9,12-октадекатриеновая кислота С 17 Н 28 COOH 18:3ω6 18:3Δ6,9,12 СН 3 -(СН 2)-(СН 2 -СН=СН) 3 -(СН 2) 6 -СООН
Линоленовая кислота цис,цис,цис-9,12,15-октадекатриеновая кислота С 17 Н 29 COOH 18:3ω3 18:3Δ9,12,15 СН 3 -(СН 2 -СН=СН) 3 -(СН 2) 7 -СООН
Арахидоновая кислота цис-5,8,11,14-эйкозотетраеновая кислота С 19 Н 31 COOH 20:4ω6 20:4Δ5,8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 4 -(СН 2) 2 -СООН
Дигомо-γ-линоленовая кислота 8,11,14-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω6 20:3Δ8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 3 -(СН 2) 5 -СООН
- 4,7,10,13,16-докозапентаеновая кислота С 19 Н 29 COOH 20:5ω4 20:5Δ4,7,10,13,16 СН 3 -(СН 2) 2 -(СН=СН-СН 2) 5 -(СН 2)-СООН
Тимнодоновая кислота 5,8,11,14,17-эйкозапентаеновая кислота С 19 Н 29 COOH 20:5ω3 20:5Δ5,8,11,14,17 СН 3 -(СН 2)-(СН=СН-СН 2) 5 -(СН 2) 2 -СООН
Цервоновая кислота 4,7,10,13,16,19-докозагексаеновая кислота С 21 Н 31 COOH 22:6ω3 22:3Δ4,7,10,13,16,19 СН 3 -(СН 2)-(СН=СН-СН 2) 6 -(СН 2)-СООН
- 5,8,11-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω9 20:3Δ5,8,11 СН 3 -(СН 2) 7 -(СН=СН-СН 2) 3 -(СН 2) 2 -СООН

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Жирные кислоты" в других словарях:

    Одноосновные карбоновые кислоты алифатич. ряда. Осн. структурный компонент мн. липидов (нейтральных жиров, фосфоглицеридов, восков и др.). Свободные Ж. к. присутствуют в организмах в следовых кол вах. В живой природе преим. встречаются высшие Ж.… … Биологический энциклопедический словарь

    жирные кислоты - Высокомолекулярные карбоновые кислоты, входящие в состав растительных масел, животных жиров и сопутствующих им веществ. Примечание Для гидрогенизации применяют жирные кислоты, выделенные из растительных масел, животных жиров и жировых отходов.… … Справочник технического переводчика

    ЖИРНЫЕ КИСЛОТЫ, органические соединения, составные компоненты ЖИРОВ (отсюда название). По составу они являются карбоксильными кислотами, содержащими одну карбоксильную группу (СООН). Примерами насыщенных жировых кислот (в углеводородной цепи… … Научно-технический энциклопедический словарь

Насыщенные жиры все чаще обсуждаются в связи с воздействием, которое они оказывают на здоровье человека. Такое повышенное внимание возникло с тех пор, как они попали в состав многих продуктов питания, особенно кондитерских. Раньше люди знали, что любой рацион должен содержать витамины, белки, углеводы и жиры. Однако сегодня от последних стали массово отказываться. Но ведь не просто так употребляли их в прошлом. Что же произошло?

Чем занимаются жиры в организме

Биологи, диетологи, пищевики, да и простые домохозяйки, разбирающиеся в кулинарии, знают, что организм не может быть здоровым, если ему вовремя не дать необходимые элементы, особенно белки, углеводы и жиры. В этой статье мы будем говорить только о жирах, хотя это не означает, что они важнее двух других элементов. Просто белки и углеводы оставим для отдельных исследований.

Итак, жиры. В химии их называют триглицеридами, которые относятся к классу липидов. Эти элементы входят в состав мембраны, что дает возможность клеткам пропускать другие вещества. Также липиды обеспечивают активность ферментов, нервных импульсов, мышц, создают связи для разных клеток и участвуют в процессах, необходимых для работы иммунитета.

Среди известных функций, которые выполняют жиры в организме, выделим энергетическую, теплоизоляционную и защитную. Без жиров не будет энергии для создания белков и других сложных молекул. Организм не сможет усваивать жирорастворимые витамины и осуществлять множество других химических процессов.

Жиры и образ жизни

Жиры нужны человеку. Но важно помнить, что организм должен их использовать, а не накапливать. Чем активнее образ жизни, тем больше липидов расходуется. Современный же ритм жизни все меньше способствует активности — сидячая или однообразная работа, отдых в Интернете или перед телевизором. Домой мы редко ходим пешком, чаще на общественном транспорте или автомобиле. Результат — организму не нужна энергия, которую он получает из жиров, значит, они остаются нетронутыми и скапливаются.

Малоподвижный режим дня осложняется жиронасыщенным рационом. Все ускоряющийся ритм жизни не дает людям возможности питаться в спокойной домашней обстановке. Перекусывать приходится фастфудом в закусочных или продуктами кондитерской промышленности на ходу. Эти виды пищи поставляют в организм очень много липидов, а также продукты, содержащие насыщенные жиры. Они и наносят вред.

Жиры в подробностях

По химическим особенностям липиды подразделяются на две категории — жиры насыщенные и ненасыщенные. Молекула первых имеет закрытую структуру. Она неспособна присоединять к себе другие атомы. Цепочка же ненасыщенных жиров имеет открытые атомы углерода. Если такой атом в цепочке только один, то молекулу называют мононенасыщенной. Также существуют цепочки, в которых несколько атомов углерода имеют свободное место. Это полиненасыщенные молекулы. Зачем нам все эти химические подробности?

Дело в том, что именно способность цепочки присоединять к себе другие атомы делает жир, поступающий в организм, полезным. В чем его польза? В том, что эти свободные места создают условия для образования новых молекул. Свободные атомы углерода в составе жиров добавляют к себе другие элементы, после чего новая цепочка становится более нужной и полезной для организма. Насыщенные жиры такой способностью не обладают, поэтому организм не может их использовать для других целей. Из-за этого при избыточном поступлении они скапливаются.

Холестерин должен быть другом

Насыщенные жиры обладают еще одной особенностью, которая делает их изгоями. В их составе имеется холестерин. Едва услышав это слово, многие сразу подумали о сосудах, лишнем весе, сердечной мышце. Да, к сожалению, последствия современного образа жизни сделали холестерин для многих врагом.

Однако эта молекула не всегда вредна. Более того, наш организм настолько в ней нуждается, что сам ее производит. Зачем? Без холестерина невозможен процесс создания многих гормонов (кортизола, тестостерона, эстрогена и других). Кроме того, это органическое соединение участвует в сложных внутриклеточных реакциях, от которых зависит деятельность всей клетки, а значит, всего организма.

Путешествие холестерина

Организм человека снабжается холестерином двумя путями — производится в печени и поступает через жиры. Насыщенные и ненасыщенные липиды поставляют холестерин в разных соединениях. Дело в том, что это вещество не растворяется в воде. В кровь оно попадает вместе с липопротеинами. Эти молекулы имеют сложную структуру и весьма разнообразный состав.

Липопротеины с низкой плотностью уже насыщены холестерином. Они просто перемещаются с кровью по организму и используются теми клетками, в которых ощущается нехватка этого вещества. Такие липопротеины содержатся в насыщенных жирах.

Если же холестерин поступает в организм в виде липопротеинов с высокой плотностью, то пользы больше. Эти элементы содержат мало холестерина и способны его присоединять. Поэтому, приближаясь к тем клеткам, в которых есть излишек холестерина, они его забирают и переносят в печень. Там он перерабатывается и удаляется из организма. Такие липопротеины встречаются чаще в составе ненасыщенных жиров.

Не пропустите жирные кислоты

Избыток неиспользованных липидов и холестерина в организме приводит к очень тяжелым заболеваниям. Важным фактором хорошего здоровья является питание. Нужно следить, чтобы с едой не поступали в организм в большом количестве насыщенные жиры. В каких продуктах они содержатся?

Все липиды по составу очень сложны. Нельзя утверждать однозначно, что только животная или только растительная еда состоит из тех или иных веществ. Насыщенные жиры находятся как в животной, так и в растительной пище. Мясо, сало, сливочное масло — носители насыщенных липидов животного происхождения. Если говорить о носителях растительного происхождения, то это какао (его масло), кокос и пальма (их масла).

Источники животных жирных кислот

Насыщенные животные жиры содержат все жирорастворимые витамины (А, С, каротин, D, B1, E, B2). Однако содержание холестерина в них весьма высоко (в масле — 200 мг/100 г, в сале — 100 мг/100 г). Желательно употреблять эти жиры в ограниченном количестве — не больше 70 грамм в сутки.

Лучший выход — это заменить животные липиды растительными, состоящими из ненасыщенных жирных кислот. Сливочное масло заменяют оливковым (это самое лучшее решение, так как в этом продукте совсем нет «плохого» холестерина), льняным или же подсолнечным. Мясо заменяют рыбой.

Помните: насыщенные жиры — продукты весьма калорийные. Если вы в течение дня побаловали себя мясом, картофелем фри или гамбургером, обязательно пройдитесь пешком несколько остановок по пути домой. Это самый простой способ израсходовать липиды, которые вы съели.

Растительные источники вредных липидов

Насыщенные жиры — растительные масла. Весьма необычное словосочетание. Чаще мы привыкли слышать, что ими заменяют жирные кислоты. Да, так делали раньше. Сегодня такое тоже практикуют, особенно в кондитерской промышленности. Только заменяют сливочный жир пальмовым маслом. Это весьма тревожная тенденция.

Пальмовое и кокосовое масла — это насыщенные жиры. В каких продуктах нет их? Только в тех, которые приготовлены дома. Если же вы кушаете в общепите, то избежать потребления вредных жиров вам не удастся.

Многие производители в свою продукцию добавляют либо дешевое пальмовое масло (вместо дорогих животных жиров), либо искусственные транс-жиры. Последние — это шедевр цинизма пищевой промышленности. Чтобы увеличить срок годности продуктов и сделать их дешевыми, пищевики берут цепочки ненасыщенных жиров и добавляют в них кислород (в свободные места молекулы). В результате цепочка теряет свои полезные функции, превращается в твердый растительный жир, который удобен для использования, но весьма бесполезен для организма. Клетки не знают, что с ним делать и просто скапливают его.