Эндотоксины образуются. Эндотоксины. Состав, свойства, механизм действия. Отрицательный контроль опыта

По своей химической структуре эндотоксины являются сложным комплексом, состоящим из нетоксичного белка и фосфолипидополисахарида, который выдерживает нагревание до 80-100° С. Эндотоксины менее ядовиты, чем экзотоксины, и не обладают специфическим действием на организм человека. Вне зависимости от того, какому из микробов принадлежит эндотоксин, действие его на организм сходно и проявляется картиной общего отравления.

Отравление организма больных эндотоксинами имеет место при большинстве инфекционных заболеваний.

При этом происходит поражение сосудистой системы со спазмом мелких сосудов и образованием в них тромбов. Развивается кислородное голодание тканей. Наблюдается нарушение функций центральной нервной системы, сердца, почек и ряда других жизненно важных органов. Эндотоксины вызывают также лихорадочную реакцию, местные воспалительные изменения и снижение количества лейкоцитов.

Крайне тяжелая степень отравления организма эндотоксинами известна в клинике под названием эндотоксического шока.

Такое состояние возникает в тех случаях, когда происходит быстрый распад в организме большого количества микробов и при этом освобождается сразу огромное количество эндотоксина. Разрушение микробов наступает или под воздействием защитных факторов организма или при лечебном применении таких препаратов, которые обладают; микробоцидным (т. е. убивающим микробы) действием, как, например, пенициллин или стрептомицин.

Циркуляция эндотоксина в общем кровотоке не приводит к образованию в организме скольконибудь значительных количеств антиэндотоксических антител, поэтому антиэндотоксический иммунитет является очень слабым.

Не удается получить достаточно эффективную антиэндотоксическую сыворотку и путем многократной иммунизации животных, так как эндотоксины являются плохими антигенами и отличаются к тому же антигенной разнородностью.

Поскольку и получить, и подобрать нужную лечебную сыворотку практически очень трудно, антиэндотоксические сыворотки не нашли широкого применения при лечении больных. При иммунизации животных бактериями вырабатываются антитела не против эндотоксинов, а против самих микробов, т. е. иммунитет имеет антимикробную направленность.

« Карантинные инфекции», Б.А. Мокров

Термин «пироген» происходит от греческого “pyreto” – лихорадка. Пирогенами называют вещества, способные вызывать повышение температуры тела. Пирогенную реакцию способны вызывать вещества самой различной природы и разного происхождения. К пирогенам можно отнести грамотрицательные бактерии и их токсины, грамположительные бактерии и их токсины, вирусы и продукты их жизнедеятельности, а также стероиды и пр. В области контроля качества инъекционных лекарственных средств практическое значение имеют бактериальные эндотоксины, которые являются фрагментами внешней стенки грамотрицательных бактерий.

Грамотрицательные бактерии обладают двуслойной клеточной стенкой, которая окружает цитоплазматическую мембрану. Первый слой - очень тонкая (толщиной 1 нм) нелипидная мембрана, состоящая из пептидогликана. Его называют также гликопептидом или мукопептидом. Это сложный матрикс, содержащий полисахаридные цепи, связанные друг с другом поперечными сшивками из коротких пептидных цепей. Второй слой клеточной стенки - липидная мембрана толщиной 7,5 нм. Именно на этой внешней мембране и расположены эндотоксины (липополисахариды). Молекулы эндотоксина обеспечивают структурную целостность, отвечают за многие физиологические функции, в том числе определяют патогенные и антигенные свойства бактерий. Структурно молекула эндотоксина делится на три части – Липид А , Кор и О-специфическую цепь .


О-специфическая цепь Кор Липид А
Липид А состоит из дисахарида, фосфата и жирных кислот. Жирные кислоты, входящие в состав Липида А, могут быть насыщенными и ненасыщенными. Наиболее часто в состав Липида А входят кислоты: пальмитиновая, лауриновая, глутаминовая, меристиновая. Участок Липида А является наиболее константным участком молекулы ЛПС, и его строение схоже у многих бактерий.
О-специфическая цепь липополисахаридов построена из повторяющихся олигосахаридов. Наиболее распространенными сахарами, входящими в состав О-специфической цепи, являются глюкоза, галактоза, рамноза. Этот участок молекулы придает ей гидрофильные свойства, благодаря которым ЛПС хорошо растворимы в воде. Полисахаридная часть является наиболее вариабельной частью молекулы ЛПC. Часто этот фрагмент молекулы называют О-антигеном, так как именно он отвечает за антигенную активность грамотрицательных бактерий.
Кор - центральная часть молекулы, связывающая О-антиген с Липидом А. Формально структура кора подразделяется на внешнюю и внутреннюю части. В состав внутренней части кора обычно входят остатки L-глицеро-О-манногептозы и 2-кето-3-дезоксиоктоновой кислоты (КДО). КДО содержит 8 атомов углерода и в природе практически нигде больше не встречается.
Кроме липополисахаридов в состав внешней стенки грамотрицательных бактерий входят и белки (внешняя мембрана на ¾ состоит из ЛПС, и только ¼ приходится на белковые компоненты). Эти белки вместе с ЛПС образуют белково-липополисахаридные комплексы разного размера и молекулярной массы. Именно эти комплексы и называются бактериальными эндотоксинами. Очищенные препараты, которые используются в качестве стандартов, лишены пептидных фрагментов и представляют собой чистый препарат липополисахарида. Тем не менее, термин «бактериальные эндотоксины» применяется с равным успехом и к естественным эндотоксинам, оказавшимся в растворе в результате разрушения бактерий, и к чистым препаратам ЛПС.
На внешней стенке одной грамотрицательной бактерии может содержаться до 3,5 млн. молекул ЛПС. После ее гибели все они оказываются в растворе. Эндотоксины грамотрицательных бактерий остаются биологически активными молекулами и после гибели бактерий. Молекула эндотоксина температуростабильна и легко выдерживает цикл стерилизации в автоклаве. Малые размеры молекул эндотоксинов позволяют им легко проходить через мембраны, используемые для стерилизации растворов (0,22 мкм). Поэтому эндотоксины могут присутствовать в готовых лекарственных формах, даже произведенных в асептических условиях и прошедших финишную стерилизацию.
Бактериальные эндотоксины являются исключительно активными (сильными) пирогенами. Для развития лихорадочного приступа достаточно присутствия бактериальных эндотоксинов в инфузионном растворе в концентрации 1 нг/мл (около 10 ЕЭ/мл). Другие пирогены менее активны, и для развития пирогенного ответа их концентрация должна быть в 100-1000 раз больше. Обычно термины «пирогены» и «эндотоксины» употребляются как синонимы и, хотя не все пирогены являются эндотоксинами, наиболее значимыми являются именно эндотоксины грамотрицательных бактерий.

Исключительное значение в понимании механизмов развития инфекционных заболеваний сыграло открытие бактериальных токсинов. Удивительно интересную страницу в изучении инфекционных болезней составляют исследования, посвященные, в частности, бактериальным липополисахаридам (эндотоксинам), которая, судя по всему, окончательно не дописана до сих пор.

R.Koch в 1884 г. на одной из своих лекций, обсуждая механизмы развития холеры высказал суждение, что характер обнаруживаемых патолого-анатомических изменений у экспериментальных животных при внутрибрюшинном введении культуры холерного вибриона позволяют предположить роль бактериальных ядов. Сама по себе эта мысль не была революционной, поскольку исследования по изучению растворимых токсинов (таких, как, например, дифтерийной палочки) в то время уже проводилось как в Берлине (Behring и Kitasato), так и Париже (Roux и Yersin), однако она нацелила Richard Pfeiffer, ученика R.Koch на более детальное изучение патогенеза холеры.

Именно в результате этой работы была описана «токсическая субстанция, связанная с телом микробной клеткой». Прийти к такому выводу Pfeiffer удалось в результате удачно составленного, как сейчас принято говорить, «дизайна исследования» и широкой гипотетической интерпретации полученных результатов, поскольку с подобной «токсической субстанцией» работали и некоторые другие исследователи, в частности, P. Panum, A. Cantani, H. Buchner.

Следует признать, что открытию какого-либо явления или феномена способствует не только и не столько сам факт его экспериментального или клинического воспроизведения, а гипотетическая трактовка результатов, которая вписывалась бы в общепринятую теорию и не нарушала бы основополагающих положений. Pfeiffer пришлось искать выход, как первоначально казалось, из безвыходной ситуации. При попытке воспроизведения исследований Pfeiffer никому не удавалось обнаружить холерный вибрион в брюшной полости у экспериментальных животных. Поскольку животные погибали, а микроб у них не обнаруживался, это противоречило важнейшему «постулату Koch-Henle» - обязательному выделению возбудителя. Для поиска объяснения потребовалась большая изобретательность Pfeiffer, чтобы экспериментально подтвердить и объяснить, что токсическая субстанция у холерного вибриона связана с телом микробной клеткой.

Это было дерзкой и революционной идеей, поскольку противоречило ещё одному основополагающему представлению того времени, которым первоначально объяснялось развитие любого инфекционного заболевания, а именно, жизнедеятельностью микроба. Окончательную точку в подтверждении связи описанной токсической субстанции с телом микробной клетки Pfeiffer сделал, описав, что термическое разрушение холерного вибриона не ослабляет его токсический потенциал. Таким образом, проведя серию изящных экспериментов, основанных на глубоком проницательном анализе, Pfeiffer сформулировал концепцию эндотоксина как яда, который тесно связан с микробной клеткой, высвобождаемый только после её гибели, вызывая развитие патологических реакций.

Как это ни странно, но Pfeiffer в своих ранних работах избегал термина «эндотоксин», обозначая его как «первичный холерный токсин», допуская его употребление лишь в устных выступлениях, например, на лекции в Брюсселе в 1903 г. В литературе же термин «эндотоксин» впервые был использован J. Rehns в 1903 году, сотрудником института Пастера, прежде работавшего на медицинском факультете в Париже и в Институте Paul Ehrlich во Франкфурте. Pfeiffer же впервые в печатной работе использовал термин «эндотоксин» только в 1904 году. В этом факте есть определенная ирония: термин, предложенный в Институте Инфекционных Болезней в Берлине, впервые в печати был использован сотрудником Института Пастера. И это притом, что в начале ХХ столетия два ведущих центра по изучению инфекционных болезней - в Берлине и в Париже находились в жесточайшей научной конкуренции, исключающей любые официальные контакты и обмен информацией, для которых приоритет в исследованиях был определяющим.

Поскольку химическая структура биополимера обозначаемого эндотоксином еще длительное время оставалась неизученной, в исследовательских целях обычно использовался бактериальный лизат, полученный путем термической обработки культуры микробных клеток. Отсутствие возможности стандартизации и сравнения получаемых препаратов привело к тому, что исследователи, используя бактериальные лизаты описывали их различные биологические свойства (в частности, «защитные» и «повреждающие» эффекты), даже не предполагая, что действующим началом во всех случаях является один и тот же биополимер - липополисахарид (ЛПС).

Так, в частности, уже с 90-х годов XIX столетия (и вплоть до 40-х годов ХХ столетия) американский хирург W. Coley с определенным успехом использовал лизаты микробных клеток для консервативного лечения сарком мягких тканей, а H. Buchner в Германии разрабатывал «новую гигиену», основанную на введении бактериальных лизатов с целью повышения резистентности организма к инфекционным заболеваниям.

Завершить изучение химической структуры эндотоксина и определить оптимальные методы его экстракции стало возможным лишь в 50-е годы, однако это не прояснило ситуацию, а скорее, сделало этот биополимер ещё более загадочным. Оставалось совершенно непонятным, каким образом эндотоксины обладают таким удивительно неправдоподобным спектром биологической активности, включающим, с одной стороны, участие в развитии инфекционных заболеваний, индукцию лихорадки, ДВС-синдрома и шока, а с другой, являются мощным стимулятором иммунной системы, повышающим резистентность организма к инфекции, способствующим рассасыванию некоторых видов сарком. Свести в единую стройную концепцию столь разнонаправленные сведения о биологической активности эндотоксинов оказалось весьма трудной задачей, требующей проведения дальнейших исследований, уточняющих молекулярные механизмы их действия, что стало возможным лишь много позже.

Основное же внимание исследователей было сконцентрировано на изучении роли эндотоксинов в развитии инфекционных заболеваний, чему в немалой степени способствовало относительная простота и доступность экспериментальных исследований. Спираль этих работ шла параллельно достижениям в области всех фундаментальных наук, а оригинальная литература год за годом, как в зеркале, отражала уровень потенциальных возможностей проводимых исследований. Интенсивность проводимых исследований постоянно возрастала, поскольку их результативность имела непосредственное прикладное значение, в частности, - в разработке способов и методов диагностики, лечения и профилактики состояний, в развитии которых ведущую роль играют липополисахариды. Хронология основных этапов изучения бактериальных липополисахаридов представлена на рисунке.

Хронология основных этапов изучения бактериальных липополисахаридов (по Rietschel E.Th., Cavaillon J.-M., 2003).

Первоначально полагали, что исследования по изучению бактериальных ЛПС имеют узкую направленность только в отношении клиники инфекционных заболеваний, однако постепенно стало ясно их общепатологическое значение.

Ведущими направлениями исследований во второй половине ХХ столетия были:

1) изучение спектра биологической активности очищенного препарата ЛПС и отдельных его компонентов;

2) определение закономерностей в структурно-функциональные активности бактериальных ЛПС;

3) изучение механизма действия ЛПС in vitro и in vivo;

4) определение роли ЛПС в патогенезе инфекционных заболеваний; и, наконец,

5) разработка методов лечения. Поскольку разработка новых схем патогенетической терапии зависела от наших знаний и представлений о механизмах действия ЛПС, именно это направление было приоритетным в клинических исследованиях.

W.H. Welch в 1888 году (цит. по Atkins E., 1984) одним из первых высказал предположение, что микробные агенты вызывают развитие лихорадки непрямым путем, способствуя высвобождению «ферментов», возможно, из лейкоцитов, которые уже непосредственно действуют на ЦНС. Menkin W. в 40-х годах ХХ столетия сформулировал гипотезу, согласно которой действие эндотоксина (ЛПС) на организм опосредовано медиаторами, которые вырабатываются клетками организма. Уже в 50-е годы возможности фундаментальных наук позволили проводить масштабные исследования по изучению роли различных эндогенных медиаторов в реализации биологического действия эндотоксинов.

Особое значение в доказательстве правильности выдвинутой гипотезы отводилось экспериментальным работам по индукции лихорадки. В одном из первых фундаментальных исследованиях, выполненных Bennett I.L. и Beeson P.B. в 1953 г., было установлено, что при введении лабораторным животным кристаллического экстракта острого воспалительного экссудата («Menkin"s пирексин») и различных микробных агентов, в их крови обнаруживается «лейкоцитарный пироген». В планомерно проводимых исследованиях, как в условиях экспериментальной эндотоксинемии, так и у больных с различными инфекционными заболеваниями, обусловленными грамотрицательными бактериями, было установлено участие таких регуляторных систем, как ренин-ангиотензин-альдостероновая, калликреин-кининовая, гистаминовая и многие другие системы в развитии ответной реакции организма на ЛПС.

70-80-е годы ознаменовались детальным изучением молекулярных механизмов регуляции клеточных функций организма под действием эндотоксинов. Особое место в этих исследованиях занимали работы по изучению роли простагландинов, увеличение синтеза которых при экспериментальных грам-отрицательных инфекциях был установлен в работах R.A. Giannella (1973-1979). В эти годы именно простагландинам отводилась ведущая роль в развитии воспалительной реакции, индуцированной бактериальными эндотоксинами. В 1976-1982 гг. нами была проведена серия клинико-экспериментальных исследований, посвященных уточнению значения простагландинов в развитии синдрома интоксикации при острых кишечных инфекциях.

В частности, было установлено, что эндотоксины энтеробактерий способны значительно усиливать биосинтез простагландинов из арахидоновой кислоты (С.Г. Пак, М.Х. Турьянов, 1979), которые, в свою очередь, опосредуют развитие функциональных расстройств со стороны гемостаза, гемодинамики и других систем макроорганизма. Логическим завершением этой серии работ явилось обоснование раннего использования ингибиторов биосинтеза простагландинов в терапии больных с эндотоксинемиями (С.Г. Пак с соавт., 1988).

Позднее столь же детально были изучены цитокины, позволившие установить взаимосвязь уровня некоторых из них (прежде всего TNF-б и IL-1) с развитием инфекционно-токсического шока.

По мере расширения наших представлений относительно механизмов действия бактериальных ЛПС, неоднократно предпринимались попытки применения различных классов фармакологических препаратов, точкой приложения которых были «ключевые звенья патогенеза» эндотоксинемий (таблица 2).

Таблица 2

Основные этапы в изучении механизмов действия эндотоксинов и предложения по патогенетическим методам лечения эндотоксинемий

Инфекционные заболевания и

возбудители

Хронические заболевания

Вирусный гепатит В, С (HBV-инфекция, HCV-инфекция)

Гепатоцеллюлярная карцинома, гломерулонефрит криоглобулинемический мембранопролиферативный, криоглобулинемия, аутоиммунный тиреоидит, острый диссеминированный энцефаломиелит

Вирусы Сoxsasckie группы B

Сахарный диабет

Риновирусная инфекция

Хламидийная инфекция (Cl.pneumonia)

Атеросклероз

Mycobacterium paratuberculosis

Болезнь Крона

Цитомегаловирусная инфекция

Сахарный диабет, эндокардиальный фиброэластоз, синдром хронической усталости

Краснуха

Сахарный диабет, синдром врождённой краснухи, прогрессирующий панэнцефалит

Папилломавирусы человека 16, 18 типа

Карцинома шейки матки

Epstein-Barr вирусная инфекция

Назофарингеальная карцинома, лимфома Беркитта, В-клеточная лимфома, лейкоплакия слизистой ротовой полости

Polyoma вирус (JC вирус)

Рак толстой кишки

Герпесвирусы 8-го типа (HHV-8)

Саркома Капоши, болезнь Кастльмана, первичная лимфома

Вирусы эпидемического паротита, кори, цитомегаловирусы, аденовирусы, энтеровирусы

Эндокардиальный фиброэластоз, шизофрения, депрессивные и пограничные состояния

Campylobacter jejuni, Chlamydia psittaci

Helicobacter pylori

Язвенная болезнь желудка, некардиальная аденокарцинома желудка, не ходжкинская В-клеточная лимфома желудка, слюнных желез, двенадцатиперстной кишки, тонкого кишечника, прямой кишки

Tropheryma whippelii

Болезнь Уиппла

Шистосомоз

Рак мочевого пузыря

Хотя проводимые клинико-экспериментальные исследования и давали определенные надежды терапевтической эффективности применения этих препаратов при эндотоксинемиях, тем не менее, ни один из них не стал препаратом выбора.

Эти исследования можно рассматривать как продолжение увлекательного поиска «золотой пули» (по Paul Ehrlich) и создания «чудо-лекарств», как еще совсем недавно называли антибактериальные препараты, однако, на самом деле, они служат отражением степени и глубины наших представлений о хитросплетениях патогенетических механизмов развития инфекционных заболеваний.

И следует признать, что чем глубже мы познаем механизмы развития инфекционных заболеваний, тем яснее и отчетливее понимаем, что универсального лекарства быть не может. «Золотым ключом» в решении проблемы повышения эффективности проводимых нами терапевтических и профилактических мероприятий при инфекционных заболеваниях является комплексное изучение инфекционного процесса с обязательным учетом функционирования естественных (природных) защитных систем макроорганизма.

«Болезнь - это драма в двух актах,

из которых первый разыгрывается в угрюмой тишине наших тканей,

при погашенных свечах.

Когда появляется боль или другие неприятные явления,

это почти всегда уже второй акт»

«Лихорадка - это сильнейший механизм,

который природа создала для покорения своих врагов»

Sydenham, английский врач XVII века

Способы удаления бактериальных эндотоксинов из биологических образцов.

В широком смысле под эндотоксинами понимают бактериальные токсические вещества, которые являются структурными компонентами бактерий. Частным и наиболее упоминаемым эндотоксином являются липополисахариды (ЛПС). Липополисахариды - структурные компоненты мембран грам-негативных бактерий, поддерживающие стабильность мембраны. На одну клетку Escherichia coli приходится около двух миллионов молекул ЛПС. Несмотря на то, что эндотоксины достаточно прочно связаны с мембраной клеток, в процессе деления и смерти бактериальных клеток происходит высвобождение бактериальных эндотоксинов . Присутствие бактериальных эндотоксинов в препаратах, в особенности применяемых для внутривенного введения, представляет собой огромную проблему. Хотя сами по себе эндотоксины не являются токсическими веществами, их попадание в организм активирует иммунную систему - в основном процесс идет через активацию моноцитов и макрофагов - что приводит к высвобождению целого ряда противовоспалительных медиаторов, таких как фактор некроза опухоли (tumor necrosis factor - TNF), интерлейкины (особенно IL-6 и IL-1) и других агентов. Развитие каскадной противовоспалительной реакцией, сопровождающейся повышением температуры и лихорадкой (так называемый, эндотоксический шок), может привести к летальному исходу.

По сравнению с белками, бактериальные эндотоксины очень стабильны. Их стабильность сохраняется при высоких значениях температур и в широком диапазоне рН.

Работы, описывающие токсический эффект после внутривенного введения растворов, приготовленных из бактериальных культур и не содержащих микроорганизмов, начали публиковать с конца 19-ого века. И количество подобных работ постоянно увеличивалось.

В 1912 году Hort и Penfold стали использовать термин "пирогенный" (pyrogenic) для обозначения растворов, вызывающих лихорадочное состояние. В 1945 году Westphal опубликовал работу, в которой он описывал полисахаридный комплекс, обнаруженный во внешнем слое бактериальной стенки и обладающий пирогенным эффектом.

В последующие годы Westphal опубликовал еще несколько работ, где он продолжал изучать липосахариды из различных энтеробактерий. В последующие годы молекулярная организация эндотоксинов и механизм их воздействия на организм продолжали изучаться.

Также называемые полисахаридами (ЛПС), являются главным компонентом внешней мембраны грам-негативных бактерий (см. рис. 1).

Рисунок 1: Молекулярная модель внутренней и внешней мембран из E. coli K-12
Формы: овалы и прямоугольники представляют сахарные остатки, кружки - полярный рабочие группы различных липидов.
Сокращения: PPEtn (ethanolamine pyrophosphate); LPS (lipopolysaccharide); Kdo (2-keto- 3-deoxyoctonic acid).

Состоят из гидрофильного полисахаридного остатка, который соединен ковалентной связью с гидрофобным липидным остатком (липид А) (см. рис. 2).

Липосахариды большинства видов бактерий состоят из трех основных блоков:
- блок О-антигена (O-antigen region),
- олигосахарид сердцевины (core oligosaccharide),
- липид А (lipid A).

О-антиген в основном состоит из последовательности одинаковых олигосахаридов (от трех до восьми моносахаридов каждый), определяющих видовую специфичность и серологическую особенность соответствующей бактерии.
Олигосахарид сердцевины имеет консервативную структуру с внутренней областью 3-дезокси-D-манно-2- октулосоновой кислота (KDO) - гептоза и внешней области состоящей из гексоз. Так, например, среди видов E.coli известно пять разных типов сердцевинной области. Липид А является самой консервативной частью эндотоксина и отвечает за большинство биологических свойств эндотоксина, в том числе, за его биологическую токсичность. Бактериальные штаммы, в составе мембраны которых отсутствовал бы липид А или эндотоксин, не известны современной науке.

Рисунок 2: Химическая структура эндотоксина из E. coli
(Hep) L-glycerol-D-manno-heptose; (Gal) galactose; (Glc) glucose; (KDO) 2-keto-3-deoxyoctonic acid; (NGa) N-acetylgalactosamine; (NGc) N-acetyl-glucosamine.

Молекулярная масса мономера эндотоксина обычно составляет от 10 до 70 кДа. Но встречаются и отдельные исключения: 2.5 кДа с коротким О-антигеном до 70 кДа с очень длинным О-антигеном. Клетки "теряют" эндотоксины в большом количестве во время своей гибели, а также в процессе роста и деления. Эндотоксины устойчивы к высоким температурам и не разрушаются при стандартных режимах автоклавирования. Эндотоксины можно разрушить только при использовании следующих режимов: 250 °С в течение 30 минут или 180 °С в течение более 3 часов. Применение кислот и щелочей с концентрацией не менее 0.1 М также может привести к разрушению эндотоксинов.

Методы удаления эндотоксинов

Существует целый ряд методов, которые применяют для удаления бактериальных эндотоксинов : ионообменная хроматография, аффинные сорбенты, гель-фильтрация, ультрафильтрация, центрифугирование в градиенте сахарозы, использование системы двухфазного разделения.

Способ удаления определяется масштабами и экономической целесообразностью. Для удаления эндотоксинов из больших объемов обычно используют ультрафильтрацию и ионообменную хроматографию. Ультрафильтрация очень эффективна для удаления эндотоксинов из воды и водных растворов, но совершенно не годится в случаях очистки от эндотоксинов растворов, содержащих белки или нуклеиновые кислоты. Те же недостатки ультрафильтрации относятся и к ионообменной хроматографии. Использование аффинных сорбентов, как правило, иммобилизованных на агарозе, сефарозе, акриламиде и других носителях, является, пожалуй, самым эффективным способом удаления бактериальных эндотоксинов. Основные минусы такого подхода: 1. длительность процесса удаления (необходимо многократно пропускать пробу через колонку, скорость протока при этом не может быть большой, т.к. это приводит к деформации сорбента), 2. разбавление пробы в процессе очистки может быть от 10 до 100-кратной, 3. стоимость аффинного сорбента может быть очень большой.

Двухфазная система разделения является самым дешевым и самым эффективным способом удаления эндотоксинов. Основной принцип этого метода - образование двухфазной мицеллярной системы за счет добавляемого в водный раствор мицеллообразующего полимера. Бактериальный эндотоксин захватывается образующимися мицеллами из водной гидрофильной части и при разделении фаз остается в гидрофобной среде (см. рис. 3).

Рисунок 3: Схема двухфазного мицеллярного разделения, вызванного повышением температуры.
Мицеллы могут присутствовать и в водной фазе, но их размер значительно меньше, чем в нижней гидрофобной части.

Использование трех циклов обработки двухфазной системой позволяет снизить уровень эндотоксинов во всех рекомбинантных белках, получаемых из E. coli, более чем на 99%. При этом биологическая активность и свойства самих белков не претерпевают изменений.
Минус двухфазной системы - в водной фазе после разделения всегда остается некоторое количество добавляемого мицеллообразующего полимера. Некоторые исследователи считают, что примеси этого полимера оказывают негативное влияние при дальнейшем использовании очищенных таким образом препаратов. Другие исследователи опровергают негативное такое негативное влияние. Наш опыт использования препаратов, очищенных от бактериальных эндотоксинов при помощи двухфазной мицеллярной системы, как в системе in vitro, так и in vivo, не показал никаких негативных эффектов ни на клетки, ни на животных, в которые вводили очищенные препараты.
По-видимому, работа с такой системой требует некоторых навыков и их недостаток может проявляться в последующих результатах.

Определение эндотоксинов

Для определения эндотоксинов стандартно применяют LAL тест (LAL: Limulus Amebocyte Lysate). С семидесятых годов этот тест вытеснил применявший ранее так называемый "пирогенный тест", когда испытуемый препарат вводили кроликам. Кролики очень чувствительны к эндотоксинам и их реакция на вводимые препараты долгое время служила индикатором пирогенности.
В настоящее время стал применяться также EAA тест (EAA: Endotoxin Activity Assay). Этот тест разработан компанией Spectral Diagnostics Inc. (www.spectraldx.com) и позволяет выявлять уровень эндотоксинов в крови.
По международной классификации концентрацию эндотоксинов обозначают в EU (endotoxin units): EU/мл или EU/мг. Одна единица (1 EU) приблизительно соответствует 100 пг эндотоксина. Одна бактериальная грам-негативная клетка содержит приблизительно 10-15г или 1 фг эндотоксина, таким образом, 1 EU производят 105 бактерий. 1 мл ночной культуры E. coli содержит от 5·108 до 109 клеток, что соответствует до 10"000 EU на 1 мл культуры.

Максимально допустимый уровень эндотоксина при внутривенном введении - 5 EU на кг тела в течение часа.

По материалам статьи ЗАО "Силекс". Реагенты для удаления эндотоксинов. www.sileks.com

В одно из царств живой природы входят одноклеточные живые организмы, выделенные в отдел Бактерии. Большинство их видов вырабатывают особые химические соединения - экзотоксины и эндотоксины. Их классификация, свойства и влияние на организм человека будут изучены в данной статье.

Что такое токсины

Вещества (в основном белковой или липополисахаридной природы), выделяемые в межклеточную жидкость после ее гибели - это бактериальные эндотоксины. Если живой прокариотический организм продуцирует ядовитые вещества в клетку хозяина, то в микробиологии такие соединения называют экзотоксинами. Они оказывают разрушающее действие на ткани и органы человека, а именно: инактивируют ферментативный аппарат на клеточном уровне, нарушают обмен веществ. Эндотоксин - это яд, оказывающий поражающее действие на живые клетки, причем концентрация его может быть очень малой. В микробиологии известно около 60 соединений, выделяемых бактериальными клетками. Рассмотрим их более подробно.

Липополисахаридная природа бактериальных ядов

Учеными установлено, что эндотоксин - это продукт расщепления внешней мембраны Он представляет собой комплекс, состоящий из сложного углевода и липида, взаимодействующий с конкретным видом клеточных рецепторов. Такое соединение состоит из трех частей: липида А, молекулы олигосахарида и антигена. Именно первый компонент, попадая в кровоток, вызывает наибольший повреждающий эффект, сопровождаемый всеми признаками тяжелого отравления: диспептическими явлениями, гипертермией, поражениями центральной нервной системы. Заражение крови эндотоксинами происходит настолько стремительно, что в организме развивается септический шок.

Еще один структурный элемент, входящий в эндотоксин - это олигосахарид, содержащий гептозу - C 7 H 14 O 7 . Поступая в кровяное русло, центральный дисахарид также может вызывать интоксикацию организма, но в более легкой форме, чем случае попадания в кровь липида А.

Последствия влияния эндотоксинов на организм человека

Наиболее распространенными последствиями действия бактериальных ядов на клетки являются тромбогеморрагический синдром и септический шок. Первый вид патологии возникает вследствие поступления в кровь веществ - токсинов, снижающих ее свертываемость. Это приводит к многочисленным повреждениям органов, состоящих из соединительной ткани - паренхимы, таких, например, как легкие, печень, почки. В их паренхиме происходят множественные кровоизлияния, а в тяжелых случаях - кровотечения. Другой вид патологии, возникающий в результате действий бактериальных ядов - это септический шок. Он приводит к нарушениям крово- и лимфообращения, последствиями которого являются нарушения транспортировки кислорода и питательных веществ к жизненно важным органам и тканям: головному мозгу, легким, почкам, печени.

У человека резко нарастают угрожающие для жизни симптомы, такие как стремительное падение кровяного давления, гипертермия и быстроразвивающаяся острая сердечно-сосудистая недостаточность. Срочное медицинское вмешательство (проведение гормональной и антибиотикотерапии) купирует действие эндотоксина и быстро выводит его из организма.

Отличительные особенности экзотоксинов

Прежде чем выяснить специфику этого вида бактериальных ядов, напомним, что эндотоксин - это один из компонентов лизата клеточной стенки погибшей грамотрицательной бактерии. Экзотоксины синтезируются живыми как грамположительными, так и грамотрицательными. С точки зрения химического строения, они являются исключительно белками с небольшой молекулярной массой. Можно сказать, что основные клинические проявления, возникающие в процессе инфекционных болезней, вызваны именно поражающим действием экзотоксинов, которые образуются вследствие метаболизма самой бактерии.

Микробиологическими исследованиями доказана более высокая вида бактериальных ядов, по сравнению с эндотоксинами. Возбудители столбняка, коклюша, дифтерии вырабатывают ядовитые вещества белковой природы. Они обладают термолабильностью и разрушаются при нагревании в диапазоне от 70 до 95 градусов Цельсия в течение 12-25 минут.

Виды экзотоксинов

Классификация такого типа бактериальных ядов построена по принципу их влияния на структуры клетки. Например, различают мембранотоксины, они разрушают оболочку клетки хозяина или нарушают диффузию и ионов, проходящих через мембранный бислой. Также существуют цитотоксины. Это яды, действующие на гиалоплазму клетки и нарушающие реакции ассимиляции и диссимиляции, протекающие в клеточном метаболизме. Другие соединения - яды «работают», как ферменты, например, гиалуронидаза (нейроминидаза). Они подавляют работу иммунной системы человека, то есть инактивируют выработку В лимфоцитов, моноцитов и макрофагов в лимфатических узлах. Так протеазы разрушают защитные антитела, а лецитиназа расщепляет лецитин, входящий в состав нервных волокон. Это приводит к нарушению проведения биоимпульсов, и, как следствие, к снижению иннервации органов и тканей.

Цитотоксины могут действовать как детергенты, при этом происходит разрушение целостности липидного слоя мембраны клетки хозяина. Более того, они способны разрушать, как отдельные клетки организма, так и их ассоциаты - ткани, вызывая образование биогенных аминов, являющихся продуктами метаболических реакций и проявляющими токсические свойства.

Механизм действия бактериальных ядов

Микробиологическими исследованиями установлено, что эндотоксин - это комплексная структура, содержащая 2 молекулярных центра. Первый прикрепляет ядовитое вещество к специфическому рецептору клетки, а второй, расщепляя её мембрану, попадает непосредственно в гиалоплазму клетки. В ней токсин блокирует реакции обмена веществ: биосинтез белков, происходящий в рибосомах, синтез молекул АТФ, осуществляемый митохондриями, репликацию нуклеиновых кислот. Высокая вирулентность бактериальных пептидов, с точки зрения химического строения их молекул, объясняется тем, что некоторые локусы токсина маскируются под пространственную структуру веществ в клетке, таких как нейромедиаторов, гормонов и ферментов. Это позволяет токсину «обходить систему клеточной защиты» и стремительно проникать в её цитоплазму. Таким образом, клетка оказывается безоружной перед бактериальной инфекцией, так как теряет способность к образованию собственных защитных веществ: интерферона, гамма-глобулинов, антител. Нужно отметить, что свойства эндотоксинов и экзотоксинов схожи в том, что оба вида бактериальных ядов воздействуют на конкретные клетки организма, то есть обладают высокой специфичностью.