Объективом телескопа рефлектора служит. Телескоп системы ньютона. Все об основах астрономии и «космических» объектах

Основные оптические системы зеркальных телескопов

11 октября 2005 года в эксплуатацию был запущен телескоп Southern African Large Telescope в ЮАР с главным зеркалом размером 11 x 9.8 метров, состоящим из 91 одинакового шестиугольника.

13 июля 2007 года первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на первую половину 2009 года .

В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ. ) и адаптивная оптика , что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.

См. также

Примечания

Литература

  • Чикин А. А. «Отражательные телескопы» , Петроград, 1915
  • Навашин М. С. Телескоп астронома-любителя. - М .: Наука, 1979.
  • Сикорук Л. Л. Телескопы для любителей астрономии.
  • Максутов Д. Д. Астрономическая оптика. - М.-Л.: Наука, 1979.

Ссылки

  • Анимационные оптические схемы: Максутова-Касегрена, Максутова - Ньютона, Грегори-Максутова

Wikimedia Foundation . 2010 .

Что такое рефлектор?

В широком смысле слова рефлектор - это любой телескоп , объектив которого состоит только из зеркал. Это и объективы по схеме Ньютона (вогнутое параболическое главное зеркало и вспомогательное диагональное), и Кассегрена (главное - вогнутое, экранирующее меньшее по размеру - выпуклое), и Ричи-Кретьена (апланатический - свободный от комы - Кассегрен), и довольно редкого Грегори (вогнутое и главное, и экранирующее вспомогательное), и некоторые еще менее распространенные двух-, трех- и четырехзеркальные.

Однако в узком смысле это название обычно употребляют по отношению только к Ньютонам.

Какова схема Ньютона?

Классическая схема Ньютона это - вогнутое параболическое зеркало (главное зеркало - ГЗ), которое отражает лучи от бесконечно удаленного объекта в фокальную плоскость на расстоянии равном половине радиуса кривизны при вершине зеркала. Для того, чтобы вывести изображение из падающего параллельного пучка используется вспомогательное плоское зеркало повернутое на 45 градусов к оси труба, оно отражает изображение на 90 градусов. Из-за этих 45 градусов оно назвается диагональным (ДЗ). Для того, чтобы его тень на ГЗ была круглой (это выгодно по ряду соображений) форма ДЗ обычно делается эллиптической с отношением большой оси к малой равном 1.4142 (корень из двух). Размеры определяются размерами сечения светового конуса конуса в плоскости расположения ДЗ. Малая ось эллипса отражающей поверхности диагонального зеркала определяется следующим соотношением:

a (мм) = 4*S*D*(S-f"+L)/(4*S*S-D*D) , S (мм) = D*f"/(D - 2y")

S - расстояние от ГЗ до вершины светового конуса (равно фокусному расстоянию при нулевом невиньетированном поле), D (мм) - диаметр ГЗ, 2y" (мм) - диаметр невиньетированного поля зрения, f" (мм) - фокусное расстояние ГЗ, L (мм) - излом оси (расстояние от оси трубы до вынесенной в бок фокальной плоскости).

Отношение a/D - линейный коэффициент экранирования и обычно выражают в процентах. При этом геометрический центр эллипса диагоналки для сохранения симметричности виньетирования должен быть смещен с оси главного зеркала на

d (мм) = 0.25*a*D/S = D*D*(S-f"+L)/(4*S*S-D*D ), мм

в сторону от фокусера и к главному зеркалу. Внутренний размер трубы Ньютона должен быть больше диаметра ГЗ как минимум на величину примерно 2y", чтобы не виньетировались наклонные (полевые) световые пучки.

Труба телескопа Ньютона

Труба телескопа Ньютона состоит из следующих основных частей

Труба

Обеспечивает постоянство положения отдельных частей относительно друг друга, светозащиту от внешней засветки, потоков теплого воздуха от тела и дыхания наблюдателя, пыли и влаги. Труба может быть сплошной несущей или выполненной в виде фермы (возможно с легким чехлом, например, из капрона. Для уменьшения тепловых внутри трубы лучше окрашивать трубу снаружи белым цветом, а материал трубы выбирать из неметаллов. Жесткость трубы обеспечивает таже возможность ее присоединения к монтировке телескопа. Меньшая жесткость нужна для крепления в альт-азимутальной симметричной монтировке (типа Добсона) и несколько больная для крепления в экваториальной.

Главное зеркало

Создает изображение удаленных предметов в фокальной плоскости окуляра. В классическом исполнении имеет профиль параболоида вращения, но иногда при малых относительных отверстиях может быть заменено на сферическое. Парабола более подвержено технологическим ошибкам изготовления в процессе так называемой фигуризации, но зато обеспечивает высокую светосилу и минимальные аберрации на оси. Толщина зеркала должна быть такой, чтобы обеспечивать достаточную жесткость в условиях переменных весовых нагрузок, а материал - стекло, ситалл или даже плавленый кварц с высокой степенью оптической однородности и минимумом напряжений (как это обычно бывает в закаленном или витринном стекле).

Диагональное зеркало

Отбрасывает отраженный главным зеркалом свет вбок, позволяя рассматривать его фокальную плоскость без помех. Зеркало плоское (точность плоскости не менее 1/4 длины волны), имеет в идеале эллиптическую форму отражающей поверхности и скошенные под 45 градусов нерабочую цилиндрическую поверхность. Требования к материалу столь же жесткие как и у главного зеркала. На рынке аксессуаров есть предложения с 95% зеркальным и даже 99% диэлектрическим многослойным слоем отражения, но обычно алюминиевый зеркальный слой отражает порядка 88%. Размер зеркала снизу ограничен диаметром осевого пучка в точке излома оси и возможно меньшим виньетированием внеосевых пучков, а сверху требованиями минимизации экранирования (при малой оси диагоналки 30% от апертуры контраст изображения падает также как 1/4 волновая сферическая аберрация).

Как диагональное, так и главное зеркало имеют наружное зеркальное покрытие (обычно алюминиевое с защитой оксидом кварца или без) весьма чувствительное к механическим нагрузкам. Оно требует особенно бережного обращения и предохранения от царапин при чистке и мойке. Самый мелкие и незаметные царапинки на зеркальном слое приводят к уменьшению контраста изображения и потере проницания.

Оправа главного зеркала

Обеспечивает относительную (с точностью до тепловых зазоров порядка 0.5 мм на сторону) неподвижность главного зеркала по отношению к другим узлам. Лапки (реже приклеивание) предохраняют зеркало от выпадения из оправы. Зеркало обычно укладывается на три равносторонне разнесенные на опоры (диаметр окружности проходящей через опоры равен 0.4 диаметра зеркала) или на специальную систему весовой разгрузки. Оправа зеркала должна иметь возможность менять свое положение в трубе при помощи так называемых юстировочных винтов относительно трубы телескопа или неподвижной части оправы (базы) для обеспечения точной юстировки Ньютона.

Система охлаждения главного зеркала

Это или пассивная система, когда тыльная сторона зеркала максимально открыта наружному воздуху для того, чтобы как можно быстрее привести зеркало в температурное равновесие с окружающей средой, или активная вентиляция наружной и тыльной поверхности зеркала при помощи вентиляторов (обычно используются вентиляторы охлаждения системных блоков компьютеров).

Оправа вторичного зеркала

Оправа диагонального зеркала Ньютона обеспечивает, с одной стороны, точное и постоянное во времени положение диагонального зеркала относительно других элементов схемы (окуляра и главного зеркала), а с другой - возможность небольших изменения угла наклона, угла поворота относительно оси трубы и смещения вдоль ее для коллимации телескопа в процессе грубой юстировки.

"Паук" или растяжки

Обычно четырехлучевая схема подвески узла вторичного (диагонального) зеркала в трубе телескопа. Должна обеспечивать надежное фиксирование диагонального зеркала и возможность его центрировки относительно оси трубы. Иногда встречаются трехлучевые "пауки" (в отличие от четырехлучевых приводят к появлению шести дифракционных лучей вокруг изображения каждой яркой звезды). Еще более экзотичны теперь "одноногое" крепление вторичного зеркала и крепление на искривленных растяжках (последние уменьшают дифракционные лучи, до их полного исчезновения).

Фокусер

Предоставляет базу (обычно торец цилиндра и диаметр отверстия стандарта 1.25" или 2") для позиционирования и крепления окуляра с возможностью фокусировки (подгонки под зрение наблюдателя и совмещения фокальных плоскостей окуляра и главного зеркала). Обычно фокусер состоит из базы прикрепляемой к трубе (иногда с возможностью регулировки для выставления перпендикулярности), механизма фокусировки и подвижной трубки фокусера (обычно она имеет возможность перемещаться перпендикулярно оси трубы поступательно, без прокручивания). Наибольшее распространение получили реечная конструкция и фокусер Крейфорда. В любительской практике встречаются фокусеры из корпусов недорогих фотообъективов (типа Гелиос 44 и ему подобных).

Диафрагмы светозащиты

Прочие аксессуары

К трубе телескопа Ньютона обычно крепятся также оптический или коллимационный искатель, система балансировки (для того, чтобы трубы была подвешена на монтироке в состоянии безразличного равновесия), площадка для крепления фотооборудования и гида (небольшого телескопа для ручного или автоматического слежения за фотографируемым объектом). Важно иметь крышки, герметично закрывающие фокусер, передний и задний обрез трубы для ее хранения и перевозки.

А вот говорят есть какая-то "кома"?

При идеально изготовленной параболе ГЗ (что, говоря по совести, бывает только в математической модели) и идеальной юстировке центр поля зрения Ньютона полностью свободен от аберраций и разрешение ограничено только дифракцией (в том числе и от тени вторичного зеркала, которую можно особенно не принимать во внимание при коэффициенте линейного экранирования до 20%). Но Ньютон не свободен от аберраций. Чуть в сторону от оси и уже начинает проявляться кома (неизопланатизм) - аберрация связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что пятно рассеививания выглядит как проекция конуса - острой и самой яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Размер пятна рассеивания пропорционален удалению от центра поля зрения и пропорционален квадрату диаметра апертуры. Поэтому особенно сильно проявление комы в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения. Обычно будущих владельцев Ньютона пугают малым диаметром поля зрения условно свободного от влияния комы (то есть в пределах которого кома меньше пресловутого критерия Релея). Приведем и мы эту несколько модернизированную табличку:

k d, мм ф150 ф200 ф250 ф300
2.86 0.50 4 3 2 2
3.21 0.71 5 4 3 3
3.61 1.00 6 5 4 3
4.05 1.41 8 6 5 4
4.55 2.00 10 8 6 5
5.10 2.83 13 10 8 6
5.73 4.00 16 12 10 8
6.43 5.66 20 15 12 10
7.22 8.00 25 19 15 13
8.10 11.3 32 24 19 16
9.09 16.0 40 30 24 20
10.2 22.6 51 38 30 25

k - относительное фокусное расстояние параболического зеркала телескопа,

d - диаметр поля зрения свободного от комы в мм (d = k3/45),

ф150 ф200 ф250 ф300 - колонки в который указаны угловые поля зрения условно свободные от комы, в угловых минутах соотвественно диаметру главного зеркала фХХХ в мм.

Возможно, покажутся полезными следующие формулы расчета величины комы в волновой мере:

WPV = 0.888*D/k^3

WRMS = 0.265*D/k^3

St = exp(-(1.66*D/k^3)^2)

где WPV - размах деформации волнового фронта возмущенного комой в длинах волн 0.55 мкм, k - относительный фокус зеркала, D - диаметр зеркала в мм, WRMS - среднеквадратическаая деформация волнового фронта, St - критерий Штреля.

В хорошо отъюстированных Ньютонах умеренной светосилы кома не слишком мешает наблюдениям. Она едва заметна в окуляр с ординарным полем зрения (Плёсл, Кельнер и т.п.) и сильнее в качественный широкоугольный окуляр (отсюда практический вывод - не стоит для Ньютона разоряться на очень уж дорогие широкоугольные окуляры, их перфектное качество может оказаться невостребованным - без корректора комы для детального рассматривания объект все-равно придется перемещать в центр поля зрения).

Значит только кома?

Ну, нет, конечно. Есть еще астигматизм, который хоть и проявляется в меньшей степени, чем у рефракторов, но так-же ухудшает край поля зрения. Если влияние комы линейно пропорционально удалению объекта от центра поля зрения, то астигматизм нарастает квадратично и именно он ухудшает качество изображения у края полевой диафрагмы 2" окуляров.

Вот табличка диаметров (мм) полей зрения Ньютона условно свободного от астигматизма (по критерию Реллея) в зависимости от диаметра зеркала D и относительного фокусного расстояния k = f"/D :

k\D 114 127 152 203 254 305
3.5 5.6 5.9 6.5 7.5 8.4 9.2
4 6.8 7.2 7.9 9.1 10.2 11.2
4.5 8.2 8.6 9.4 10.9 12.2 13.4
5 9.6 10.1 11.1 12.8 14.3 15.7
6 12.6 13.3 14.5 16.8 18.8 20.6
7 15.9 16.7 18.3 21.2 23.7 25.9
8 19.4 20.4 22.4 25.9 28.9 31.7
10 27.1 28.6 31.3 36.1 40.4 44.3

А всякие там Шмидт-Ньютоны?

Существуют многочисленные вариации оптической схемы Ньютона.

Ньютон со сферическим (а не параболическим) главным зеркалом. Эта схема вносит сферическую аберрацию тем большую, чем больше светосила главного зеркала. То есть пригодна только для весьма умеренных по апертуре и несветосильных инструментов. К примеру, для 150 мм диаметра сферическое зеркало с фокусом 1500 мм почти идеально замещает параболическое. См. обсуждение , в котором в частности приведена формула связывающая минимальное фокусное расстояние сферического зеркала, когда оно еще не слишком уступает параболическому f" = 1.52*D^4/3 Из этой формулы следует такая табличка минимальных фокусных расстояний при которых возможна замена парабол сферическими зеркалами:

D, мм Fmin, мм
114 840 1:7.4
130 1000 1:7.7
150 1200 1:8
200 1778 1:9
250 2394 1:9.5
300 3053 1:10

вообще же для, сферического зеркала диаметром D и относительным фокусным k = f"/D сферическую аберрацию в волновой мере можно рассчитать по формулам:

WPV = 0.888*D/k^3 - полный размах

WRMS = 0.265*D/k^3 - среднеквадратическое значение

  • Ньютон с линзовым компенсатором сферической аберрации. Это сферическое главное зеркало в сочетании с линзовый компенсатором сферической аберрации располагаемый перед фокусом в окулярном узле. Увы, качество компенсации в дешевом исполнении этой схемы невысоко, да и велика чувствительность к разъюстировкам.
  • Ньютон с корректором комы. Классический Ньютон с двух- трехлинзовым корректором комы и некоторых других полевых аберраций. В таком исполнении Ньютон становится весьма пригоден как для астрофотографических работ, так и для использования высококачественных широкоугольных окуляров. Чувствительность к разъюстировкам такая-же, как у обычного Ньютона.
  • Ньютон с призмой полного отражения вместо диагонального зеркала. Призма - не самая лучшая замена диагональному зеркалу (она вносит аберрации, имеет большее число источников погрешностей, более чувствительна к ошибкам изготовления, хуже в части экранирования и т.д.), но при небольших апертурах приемлема.
  • Шмидт-Ньютон с компенсатором в виде пластинки Шмидта. Пластинка Шмидта закрывает передний обрез трубы, что благоприятно сказывается на чистоте зеркал и уменьшении внутренних тепловых токов. Главное зеркало - сферическое. Кома примерно вдвое меньше, чем у классического Ньютона.
  • Максутов-Ньютон с афокальным компенсатором в параллельном ходе лучей в виде ахроматического мениска (расположен на переднем обрезе трубы и делает ее "закрытой"). Главное зеркало - сферическое. Кома исправлена, то есть объектив апланатичен.
  • Волосов-Ньютон с компенсатором в виде двухлинзового афокального корректора в передней части трубы (труба такми образом закрыта). Наилучшее исправление как осевых, так и полевых аберраций, позволяет достигать весьма интересных для астрофотографии светосил. См. интересное обсуждение

В чем отличие Ньютона и Добсона?

Хм,.. они жили в разное время. Да и для любителя астрономии это имена разных классов объектов. Ньютон - имя оптической схемы рефлектора, а Добсон (Доб) - имя концепции визуального любительского телескопа включающего трубу с оптической схемой Ньютона на упрощенной легкой альт-азимутальной монтировке. То есть, если кто-то говорит, что у него Ньютон. Скорее всего это означает трубу по схеме Ньютона на какой-то экваториальной монтировке (может быть с возможностью астрофотографии).

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин

Мы немного "покопались" в вопросе возникновения телескопа, а также рассмотрели поближе телескоп-рефрактор, в том числе и на примере пары моделей. Давайте сделаем шаг вперёд и поговорим о телескопах-рефлекторах.

Главное отличие рефлектора от телескопа-рефрактора - это то, что в рефлекторе за сбор света и увеличение картинки отвечает не линза, а зеркало.

Параболическое (в основном, однако иногда может быть и сферическим) зеркало расположено в нижней части трубы телескопа. Оно собирает свет и фокусирует полученное изображение на маленьком вспомогательном (вторичном) зеркале, которое уже "направляет" картинку в окуляр. При этом наблюдатель смотрит в телескоп сбоку, да ещё и со стороны, непосредственно направленной в небо. Кого-то такое устройство может смутить, и первое время человеку, привыкшему пользоваться в основном рефрактором, придётся немного помучиться с управлением.

Самый первый рефлектор изобрёл в 1667 году сэр Исаак Ньютон, которому, видимо, надоели хроматические аберрации, присущие всем рефракторам. Однако взамен привычного хроматического эффекта Ньютон получил иные особенности изображения, сопровождающие и ныне большинство рефлекторов.

А если конкретнее, то у рефлектора Ньютона (это имя и сейчас носят телескопы такого типа) есть свои аберрации. В основном любители астрономии жалуются на так называемую "кому". Этот эффект создаёт ощущение, что центр картинки и её края расфокусированы между собой - то есть звёзды по центру выглядят как положено, точками, а по краям как кометы: размазаны, "лохматы и хвостаты".

В принципе, если вы не занимаетесь астрофотографией, эта особенность рефлекторов вас не особо потревожит: ведь рассматриваемый объект, как правило, находится в центре картинки, видимой наблюдателю, а значит, не пострадает от эффекта комы. А если вы фотограф, мечтающий начать съёмку звёздного неба, то лучше заранее озаботиться поиском специальных корректоров, занимающихся исправлением именно этой аберрации.

Кома - это далеко не единственный минус рефлекторов. К таковым ещё относятся:

  • необходимость периодически регулировать положение зеркала - этот процесс называется "юстировка";
  • чувствительность устройства к температурным перепадам - нельзя вынести телескоп зимой из дома на улицу и сразу приступить к наблюдениям, иначе картинка вас здорово разочарует;
  • приличные габариты - это обстоятельство несколько сдерживает страсть к поездкам с телескопом в рюкзаке;
  • чувствительность к непогоде - сильный ветер может вызвать "тряску" изображения;
  • низкая защищённость от пыли и прочих загрязнений - фактически прямой доступ к центральному зеркалу позволяет грязи почти беспрепятственно попадать внутрь, а мыть зеркальную поверхность нужно очень осторожно, иначе есть вероятность её повредить;
  • риск нарваться на некачественную оптику в дешёвых рефлекторах.

Однако все эти минусы не могут полностью победить существенные плюсы:

  1. Цена. Это, конечно, самая положительная характеристика рефлектора. Он прост в конструкции, а зеркало нуждается в меньшей обработке, чем каждая из линз рефрактора, что, конечно же, не могло не сказаться на стоимости именно рефлектора - и притом в лучшую для покупателя сторону. Фактически за одну и ту же цену можно найти рефрактор и рефлектор, существенно различающиеся по показателю апертуры (выигрывает опять же рефлектор). Напомню: апертура - это диаметр главной линзы (у рефрактора) или же главного зеркала (у рефлектора). А как уже говорилось ранее, бОльшая апертура всегда лучше. Ведь именно от этой характеристики зависят и разрешение, и контрастность, и максимально различимая звёздная величина. А если ещё проще - чем больше апертура, тем качественнее будет картинка.
  2. Рефлектор можно установить на самый лёгкий тип монтировки, которую реально сделать даже самостоятельно: монтировка Добсона наиболее компактна с точки зрения габаритов, а кроме того, делается из дерева, ДСП или фанеры. Понятно, что в весовой категории эти материалы выигрывают у металла.
  3. Отличные показатели (как правило) по параметру светосилы - такой тип телескопов, особенно в сочетании с экваториальной монтировкой, весьма хорош в астрофотографии.
  4. Если оптика качественная, то изображение в центральной своей части будет практически лишено каких-либо аберраций - и таким показателем не может похвастать ни один рефрактор.
  5. Отлично подходит для наблюдений объектов далёкого космоса.

Однако давайте уже рассмотрим какую-нибудь подходящую модель.

Для примера возьмём телескоп Celestron PowerSeeker 127 EQ (7500 руб.).

Вполне бюджетная модель с отличной апертурой на 127 мм. Если брать 7500 руб. (ориентировочная стоимость) за верхнюю денежную "планку" для приобретения телескопа, то можно найти рефрактор с диаметром линзы максимум 70 мм. А как уже не раз говорилось, чем больше апертура, тем лучше.

В комплекте идут два сменных окуляра на 20 и 4 мм, а также трёхкратная линза Барлоу. В сумме, если смотреть в прилагающиеся к телескопу характеристики, эта оптика должна давать увеличение аж до 750 крат! Однако на практике легко можно сосчитать, до каких пределов кратности устройство будет выдавать вам чёткую картинку. Нужно всего лишь умножить значение апертуры (в мм) на 1,4 - получившаяся цифра будет именно той кратностью, после достижения которой телескоп вряд ли выдаст суперчёткую картинку. Впрочем, если умножить тот же показатель апертуры на 2, вы узнаете абсолютный качественный предел увеличения вашего устройства. Если говорить об этой модели Celestron , то 127 х 1,4 = 177,8 крат, 127 х 2 = 254 крат. Итого - 254 крат будет самым что ни на есть "потолком" в плане увеличения.

Предельная звёздная величина различаемых объектов +13 m.

Рефлектор с экваториальной монтировкой - очень хорошо для наблюдения небесных объектов, практически никак - для наземных. У модели от Celestron экваториальная монтировка идёт с механизмами тонких движений и координатными кругами, это всё поможет новичку справиться с нелёгким на первых порах делом наведения и наблюдения.

Вес телескопа - 7,7 кг, длина трубы - 508 мм. Гораздо компактнее рефрактора с такой же апертурой - тот длиной будет побольше метра, а показатель веса "нырнёт" за отметку 30 кг. Не лучший вариант для пешего похода, не так ли?

Типичный представитель рефлекторов, отлично подходит для наблюдений объектов глубокого космоса.

А теперь поговорим о зеркально-линзовых (катадиоптрических) телескопах. Иногда их ещё называют комбинированным типом.

Если в рефракторе объектив основан на использовании линзы, в рефлекторе - на зеркале, то катадиоптрики используют в своём устройстве и линзы, и зеркальную оптику. Такие объективы сложнее в изготовлении, потому их цена, естественно, будет выше, чем, допустим, стоимость рефлектора с той же апертурой. Вторая неприятная особенность такого типа заключается в том, что в связи со своей конструкцией зеркально-линзовое устройство не может обеспечить наблюдателя настолько же чёткой картинкой, как, к примеру, рефрактор.

Ещё из "минусов" - зеркально-линзовые телескопы с оптической схемой Шмидта - Кассегрена, к сожалению, не лишены коматической аберрации. А вот Максутов - Кассегрен могут похвастать картинкой без этих "помех".

Кроме прочего, катадиоптрики наиболее чувствительны к смене температурного режима - даже больше рефлекторов.

Однако положительные моменты зеркально-линзовых подчас играют решающую роль для многих любителей астрономии.

В первую очередь - это, конечно, размеры. К примеру, рефрактор с апертурой 90 мм будет в длину не менее 95 см (а скорее всего, около метра). А аналогичный по размеру апертуры Максутов - Кассегрен - 28 см длиной. Существенная разница, не так ли? Весят катадиоптрики, соответственно, тоже меньше прочих разновидностей.

Ну и не менее существенный момент - аберрации, точнее, почти полное их отсутствие. Если оптика качественная и при изготовлении телескопа производитель не допустил серьёзных "ляпов", то картинка будет лишена всех тех "неправильностей", что непременно хоть в какой-то степени сопровождают и рефракторы, и рефлекторы.

Для примера рассмотрим Celestron NexStar 90 SLT (16 300 руб.).

Как понятно уже из названия, апертура здесь равна 90 мм. Это один из представителей ряда Максутов - Кассегрен, то есть изображение, полученное с его помощью, будет практически лишено привычных аберраций.

В комплекте два сменных окуляра на 25 мм (50 крат) и 9 мм (139 крат), предельная звёздная величина обозреваемых объектов - 12,3 m.

Монтировка азимутальная с компьютерным наведением - подобная система в народе называется GoTo. В устройстве уже имеется база данных на 4000 объектов. Управление простое: выбираете объект из базы данных и телескоп автоматически "нацеливается" в нужную вам область неба. Выбор объекта делается при помощи пульта, у которого есть опция обновления через Интернет (естественно, при подключении к компьютеру). Возможности подобного управления не ограничены просто выбором какого-то объекта: GoTo позволяет наводить по координатам, получать краткую справку о каком-либо объекте; может по запросу выдавать координаты точки, на которую наведён в данный момент. Единственное, что может вызвать затруднения у новичков в астрономии, - перед началом использования телескоп нужно сориентировать на местности, то есть ввести место и время наблюдения, а также навести телескоп на пару-тройку известных пользователю звёзд. В принципе удобная система, зачастую экономящая время наблюдателя.

Штатив стальной для обеспечения максимальной устойчивости, крепление типа "ласточкин хвост" - прибор устанавливается быстрым и несложным движением. Вес телескопа - всего 5,4 кг.

Отличный вариант даже для новичков в астрономии. Возможности катадиоптрика, удобство GoTo плюс максимальная компактность - и вот уже под рукой инструмент настоящего астронома (конечно, если не отпугивает цена).

Найти идеальный универсальный телескоп невозможно. У любого типа есть свои сильные и слабые стороны. Однако, если вы точно знаете, что вас больше всего интересует на небе, можно подобрать такое устройство, которое по максимуму раскроет свои возможности.

Ребёнку в качестве первого телескопа (особенно в городских условиях) подойдёт рефрактор с апертурой 70-90 мм: он сможет детально рассмотреть и поверхность Луны, и планеты Солнечной системы, и Солнце. Единственная пометка: категорически нельзя рассматривать Солнце в телескоп без специальных фильтров - вы просто лишитесь зрения, ведь в данном случае телескоп действует как обыкновенная лупа. Вспомните, что происходит с бумажкой, если направить на неё солнечный луч через увеличительное стекло: она быстро загорится. А теперь представьте, что на месте бумажки - ваш глаз, и вам мигом расхочется экспериментировать с Солнцем.

Для качественных наблюдений далёких космических объектов (туманностей, шаровых звездных скоплений и прочего) вдали от городской засветки лучше всего подойдёт рефлектор с апертурой где-то на 114-150 мм. Конечно, чем больше этот показатель, тем лучше - там уже смотрите по деньгам.

Ну а если вы много путешествуете и при этом хотите постоянно иметь при себе телескоп, то лучшим выбором будет какая-нибудь модель Максутов - Кассегрен или другой прибор из ряда зеркально-линзовых: они компактны и их будет легче переносить.

В том случае, если вы сами ещё не решили, что именно хотите изучать, - берите рефрактор. На первое время, чтобы понять, интересно ли вам вообще такое занятие, его вполне достаточно. Лучше, если апертура будет где-то 70-90 мм: меньшие размеры вряд ли доставят настоящее удовольствие.

И не забывайте о габаритах: многие телескопы чрезвычайно неудобны в плане ручной переноски и не имеющим средства передвижения людям стоит подумать и об этом.

Телескопы-рефлекторы, их достоинства и недостатки

Настало время разобраться в том, что же такое рефлектор и чем он принципиально отличается от рефрактора.

Само слово рефлектор произошло от английского «reflect» - отражать. Из этого ясно, что в качестве основного элемента схемы выступает зеркало. Отцом рефлектора стал Исаак Ньютон, который собрал первый такой телескоп в 1688 году. До этого существовала лишь одна схема – созданный Галилеем рефрактор, который сильно грешил хроматической аберрацией (будучи неахроматическим, неспособным собрать в фокус лучи с разной длиной волны, значительно изменяя картинку).

Оптическая схема


До сих пор схема Ньютона остается самой популярной для каждого, кто захочет купить зеркальный телескоп. Суть ее крайне проста: свет попадает на параболическое (иногда — сферическое) главное зеркало, которое, в свою очередь, направляет его на диагональное зеркало (плоское). И уже этот элемент выводит свет на окуляр.

Википедия утверждает, что существует еще 7 различных рефлекторных схем, но изучать их имеет смысл разве что из праздного любопытства. По большей части в промышленных телескопах используется именно схема Ньютона. Если кто-то говорит «рефлектор», то он имеет в виду именно «рефлектор Ньютона», все прочие схемы будут обозначаться по фамилии создателя. Это объясняется тем, что все они значительно менее удобны. Где-то требуется больше зеркал, где-то смотреть приходится под углом. Ньютон – это простая и нестареющая классика.

Достоинства рефлектора

Его создавали для того, чтобы избавиться от хроматических аберраций, которые давали линзовые телескопы. Было бы странно полагать, что они у него остались. Полное отсутствие этого дефекта – главное достоинство рефлекторов. К тому же, они обладают высокой светосилой (до 1:4 в серийных моделях), которая рефракторам не может и присниться. Именно зеркальная схема сделала телескопы с большим диаметром доступными простому обывателю. Из-за большого фокусного расстояния рефрактору с большим диаметром понадобилась бы очень длинная (около 7 метров) труба. К ней, естественно, нужна огромная монтировка. Стоимость такого устройства исчислялась бы, наверное, в миллионах. То, что мы можем купить телескоп с большим диаметром за гораздо меньшие деньги – заслуга исключительно рефлекторов.

Недостатки зеркального телескопа

Формально к ним относятся световые потери из-за наличия второго зеркала (в рефракторе свет идет сразу вам в глаз, а в рефлекторе ему нужно «попутешествовать» между зеркалами), воздушные потоки внутри открытой трубы и прочее. На практике же вам будет портить жизнь лишь одна вещь – необходимость настройки зеркал (юстировки) после любой перевозки. Юстировка отнимает малую часть драгоценного времени наблюдений. При наличии опыта она занимает не более 5 минут.Впрочем, юстировки не нужно бояться – она совсем не сложна, научиться сможет любой.

Вердикт

Начиная с диаметра 110мм, имеет смысл купить рефлектор. Рефрактор, который вы сможете купить за эти деньги, будет иметь значительно меньший диаметр (в районе 90мм). Рефлекторы просты и удобны в настройке, их рекомендуется брать всем, за исключением тех, кому необходимы наземные объекты.