Тканевая инженерия. Тканевая инженерия: реальные перспективы. Тканевая инженерия - современная инновационная технология

Тканевая инженерия — молодое и развивающееся направление медицины, открывающее перед человечеством новые возможности. Профессия подходит тем, кого интересует химия и биология (см. выбор профессии по интересу к школьным предметам).

В этой статье мы расскажем вам о профессии тканевого инженера — одной из профессий будущего в этом направлении.

Что такое тканевая инженерия?

Это наука, возникшая на границе между клеточной биологией, эмбриологией, биотехнологией, трансплантологией и медицинским материаловедением.

Она специализируется на разработке биологических аналогов органов и тканей, создаваемых из живых клеток и предназначенных для восстановления или замещения их функций.

Кто такой тканевый инженер?

Это специальность, которая станет востребована в ближайшем будущем. В обязанности этого профессионала входит разработка и контроль производственного процесса, подбор материалов и формирование необходимых условий для создания тканеинженерных имплантов (графтов) и их дальнейшей трансплантации. По некоторым данным, эта профессия начнет распространяться после 2020 года.

Разработка и внедрение графта включает в себя ряд стадий:

— вначале необходимо произвести отбор и культивацию клеток;

— затем создается клеточный носитель (матрица) с использованием биосовместимых материалов;

— после этого клетки размещаются на матрице и происходит их размножение в биореакторе;

— наконец имплант помещается в область нефункционирующего органа. При необходимости перед этим графт внедряется в область с хорошим кровоснабжением для его созревания (этот процесс называется префабрикацией).

Исходным материалом могут послужить клетки ткани, которую необходимо регенерировать, или стволовые клетки. При производстве матриц могут применяться различного рода материалы (биокомпозитные, синтетические биологически инертные, природные полимерные).

Где применяются графты

  • Создание искусственных аналогов кожи, помогающих в регенерации кожного покрова при обширных ожогах.
  • Тканеинженерные импланты также обладают большим потенциалом в области кардиологии (биологические аналоги сердечных клапанов, воссоздание артерий, вен и капилляров).
  • Кроме того, они применяются при воссоздании дыхательной системы, органов пищеварения, мочевой системы, желез внешней и внутренней секреции.

Где учиться на тканевого инженера

В данный момент в нашей стране нет образовательных программ, проводящих обучение по данной специальности, существует лишь ряд лабораторий при научно-исследовательских институтах, специализирующихся на тканевой инженерии. Специалисты, желающие развиваться в этой области, могут получить базовое медицинское образование. Также следует рассмотреть возможность обучения за рубежом: в США и Европе активно развиваются магистратуры по данной специальности.

Профессионально важные качества:

  • системность мышления;
  • интерес к работе в междисциплинарной области;
  • готовность к работе в условиях неопределенности;
  • научно-исследовательский интерес;
  • отовность к командной работе.

Профилирующие дисциплины:

  • биология;
  • химия;
  • физика;
  • математика;
  • информатика.

Достижения современной тканевой инженерии

Были созданы и успешно применены аналоги сосков женской груди, тканеинженерный мочевой пузырь и мочеточники. Ведутся исследования в области создания печени, трахеи и элементов кишечника.

Ведущие научно-исследовательские лаборатории работают над воссозданием другого с трудом поддающегося восстановлению человеческого органа — зуба. Сложность заключается в том, что клетки зуба развиваются из нескольких тканей, сочетание которых не удавалось воспроизвести. В настоящее время не полностью воссозданы только ранние этапы формирования зуба.Создание искусственного глаза в настоящее время находится на начальном этапе, однако уже получилось разработать аналоги отдельных его оболочек — роговицы, склеры, радужки.

В то же время, вопрос о том, как интегрировать их в единое целое, пока остается открытым.

Группе немецких ученых из университета г. Киля удалось успешно восстановить нижнюю челюсть пациента, почти целиком удаленную в связи с опухолью.

Стволовые клетки пациента вместе с факторами роста кости поместили в точную копию его челюсти, созданную из титановой сетки. Затем на период инкубации эту конструкцию на 8 недель поместили в его мышцу под правой лопаткой, откуда затем она была пересажена пациенту.

Пока преждевременно говорить о том, насколько эффективно будет функционировать такая челюсть. Однако это первый достоверный случай пересадки кости, буквально выращенной внутри человеческого организма.

) — создание новых тканей и органов для терапевтической реконструкции поврежденного органа посредством доставки в нужную область опорных структур, молекулярных и механических сигналов для регенерации.

Описание

Обычные имплантаты из инертных материалов могут устранить только физические и механические недостатки поврежденных тканей. Целью тканевой инженерии является восстановление биологических (метаболических) функций, т. е. регенерация ткани, а не простое замещение ее синтетическим материалом.

Создание тканеинженерного имплантата (графта) включает несколько этапов:

  1. отбор и культивирование собственного или донорского клеточного материала;
  2. разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов;
  3. нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования;
  4. непосредственное внедрение графта в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью, для дозревания и формирования микроциркуляции внутри графта (префабрикация).

Клеточный материал может быть представлен клетками регенерируемой ткани или стволовыми клетками. Для создания матриц графтов применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы. Например, эквиваленты костной ткани получают путем направленного дифференцирования стволовых клеток костного мозга, пуповинной крови или жировой ткани. Затем полученные остеобласты (молодые клетки кости, отвечающие за ее рост) наносят на различные материалы, поддерживающие их деление, - донорскую кость, коллагеновые матрицы, пористый гидроксиапатит и др. Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых . Разработка графтов ведется также в кардиологии (искусственные клапаны сердца, реконструкция крупных сосудов и капиллярных сетей); для восстановления органов дыхания (гортань, трахея и бронхи), тонкого кишечника, печени, органов мочевыделительной системы, желез внутренней секреции и нейронов. металлов в тканевой инженерии используются для контроля роста клеток через воздействие на них магнитными полями разной направленности. Например, таким способом удалось создать не только аналоги структур печени, но и такие сложные структуры, как элементы сетчатки глаза. Также материалы, созданные с помощью метода (electron beam lithography, EBL), обеспечивают наноразмерную поверхности матриц для эффективного формирования костных имплантантов. Создание искусственных тканей и органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов.

Авторы

  • Народицкий Борис Савельевич
  • Нестеренко Людмила Николаевна

Источники

  1. Нанотехнологии в тканевой инженерии // Нанометр. -www.nanometer.ru/2007/10/16/tkanevaa_inzheneria_4860.html
  2. Стволовая клетка // Википедия, свободная энциклопедия.www.ru.wikipedia.org/wiki/Стволовые_клетки (дата обращения: 12.10.2009).

Развитие современной клеточной трансплантологии и ее внедрение в клинику в последние десятилетия позволило продлить жизнь многим тысячам пациентов. В настоящее время наука о трансплантации клеток остается одной из самых интенсивно развивающихся областей биологии и медицины. Уже проходят клинические испытания такие методы, как:

– трансплантация собственных гемопоэтических клеток при рассеянном склерозе, системной красной волчанке, ревматоидном артрите;
– трансплантация гемопоэтических клеток при лечении злокачественных опухолей почек, молочной и поджелудочной желез, головного мозга;
– трансплантация донорских стволовых клеток для профилактики реакции «трансплантат против хозяина» после предшествующей трансплантации гемопоэтических клеток;
– адаптивная иммунотерапия (цитотоксические Т-лимфоциты) в онкологии, клеточные онковакцины;
– трансплантация миобластов скелетной мышечной ткани;
– трансплантация нейрональных клеток пациентам с постинсультным синдромом;
– трансплантация собственных и донорских клеток костного мозга для улучшения регенерации костной ткани после переломов.

Успехи в области изучения стволовых клеток во многом обусловлены повышенным интересом ученых и клиницистов к перспективам их использования в лечении заболеваний, в настоящее время считающихся неизлечимыми. Однако при этом возникает много этических вопросов (таких, например, как использование в качестве трансплантационного материала клеток эмбрионов человека), а также вопросов, связанных с правовой регуляцией клеточных технологий. В развитии клеточных технологий наиболее перспективными считаются следующие направления:

– выделение и трансплантация стволовых клеток, в том числе собственных клеток пациента;
– выявление субпопуляций и клонов стволовых клеток;
– тестирование безопасности трансплантации (инфекционной, онкогенной, мутагенной), составление «клеточного паспорта»;
– выделение индивидуальных линий эмбриональных стволовых клеток методом переноса ядра соматической клетки;
– коррекция генетических дефектов пренатальной трансплантацией клеток или комбинацией методов переноса ядра и генетической терапии.

Тканевая инженерия

Одним из направлений биотехнологии, которое занимается созданием биологических заместителей тканей и органов, является тканевая инженерия (ТИ).

Современная тканевая инженерия начала оформляться в самостоятельную дисциплину после работ Д.Р. Уолтера и Ф.Р. Мейера (1984), которым удалось восстановить поврежденную роговицу глаза с помощью пластического материала, искусственно выращенного из клеток, взятых у пациента. Этот метод получил название кератинопластика . После симпозиума, организованного Национальным научным фондом США (NSF) в 1987 г., тканевая инженерия стала считаться новым научным направлением в медицине. К настоящему времени большинство работ в этой области выполнено на лабораторных животных, но часть технологий уже используется в медицине.

Создания искусственных органов состоит из нескольких этапов (рис. 2).

Рис. 2. Схема процессинга тканеинженерных конструкций

На первом этапе отбирают собственный или донорский клеточный материал (биопсия), выделяют тканеспецифичные клетки и культивируют их. В состав тканеинженерной конструкции, или графта, кроме культуры клеток входит специальный носитель (матрица). Матрицы могут быть выполнены из различных биосовместимых материалов. Клетки полученной культуры наносятся на матрицу, после чего такая трехмерная структура переносится в биореактор1 с питательной средой, где инкубируется в течение определенного времени. Первые биореакторы были созданы для получения искусственной печеночной ткани.

Для каждого типа выращиваемого графта подбирают специальные условия культивирования. Например, для создания искусственных артерий используют проточный биореактор, в котором поддерживается постоянный проток питательной среды с переменным пульсовым давлением, имитирующим пульсацию тока крови.

Иногда при создании графта используют технологию префабрикации: конструкцию вначале помещают не на постоянное место, а в область, хорошо снабжаемую кровью, для дозревания и формирования микроциркуляции внутри графта.

В качестве клеточного материала для создания искусственных органов применяют культуры клеток, входящих в состав регенерируемой ткани или являющихся их предшественниками. Так, например, при получении графта для реконструкции фаланги пальца были использованы приемы, вызывающие направленную дифференцировку стволовых клеток костного мозга в клетки костной ткани.

Если для создания графта применялся собственный клеточный материала пациента, то происходит практически полная интеграция графта со скорейшим восстановлением функции регенерируемого органа. В случае использования графта с донорскими клетками в организме включаются механизмы индукции и стимуляции собственной репаративной активности, и за 1–3 месяца собственные клетки полностью замещают разрушающиеся клетки графта.

Биоматериалы, используемые для получения матриц, должны быть биологически инертными и после графтинга (перенесения в организм) обеспечивать локализацию нанесенного на них клеточного материала в определенном месте. Большинство биоматериалов тканевой инженерии легко разрушаются (резорбируются) в организме и замещаются его собственными тканями. При этом не должны образовываться промежуточные продукты, обладающие токсичностью, изменяющие рН ткани или ухудшающие рост и дифференцировку клеточной культуры. Нерезорбируемые материалы почти не применяются, т.к. они ограничивают регенерационную активность, вызывают избыточное образование соединительной ткани, провоцируют реакцию на инородное тело (инкапсуляцию).

Для создания тканей и органов применяются в основном синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы (табл. 3).

Таблица 3. Классы биоматериалов, применяемых в тканевой инженерии.

Биоматериал

Биосовмести-
мость (включая
цитотоксичность)

Токсичность

Резорбция

Область применения

Синтетические: Полимеры на основе органических кислот

Гидроксиапатит

Полная до СО 2 и Н 2 О

Нерезорбируемый

Хирургия, в тканевой инженерии как матрица-носитель практически для всех культур клеток. Костная ткань

Природные:

Альгинат

Перевязочные материалы, в тканевой инженерии в виде гидрогелей (хондробласты, нервные клетки)

Перевязочные материалы, в ТИ в виде пленок, губок; в сочетании с коллагеном (реконструкция костной, мышечной, хрящевой тканей, сухожилий)

Коллаген

Замещение собственными белками, ферментативный лизис

Перевязочные материалы, в ТИ (губки, трехмерные модели, пленки) как матрица-носитель практически для всех культур клеток.

Внеклеточный матрикс (естественные биологические мембраны)

++++
(за счет включенных в структуры биологически активных веществ и факторов роста)

Ремоделирование с заменой собственными белками

Шовный материал, в ТИ (трехмерные модели, пленки) как матрица-носитель для практически всех культур клеток

Одними из первых в тканевой инженерии стали применяться биодеградируемые синтетические биоматериалы на основе полимеров органических кислот, например молочной (PLA, полилактат) и гликолевой (PGA, полигликолид). При этом в состав полимера может входить как один тип кислотного остатка, так и их сочетания в различных пропорциях. Матрицы на основе органических кислот легли в основу создания таких органов и тканей, как кожа, кость, хрящ, сухожилие, мышцы (поперечно-полосатая, гладкая и сердечная), тонкая кишка и др. Однако у этих материалов имеются недостатки: изменение рН окружающих тканей при расщеплении в организме и недостаточная механическая прочность, что не позволяет использовать их как универсальный материал для матриц и подложек.

Особое место среди материалов для биоматриц-носителей занимают коллаген, хитозан и альгинат.

Коллаген практически не имеет антигенных свойств. Использованный в качестве матрицы, он разрушается за счет ферментативного гидролиза и структурно замещается собственными белками, синтезируемыми фибробластами. Из коллагена могут быть изготовлены матрицы с заданными свойствами для реконструкции практически любых органов и тканей. Являясь естественным тканевым (межклеточным) белком, он оптимально подходит в качестве носителя культуры клеток, обеспечивая рост и развитие ткани.

Альгинат – полисахарид из морских водорослей, может быть использован в качестве матрицы-носителя, однако не обладает достаточной биологической совместимостью и оптимальными механическими свойствами. Обычно он используется в виде гидрогелей для восстановления хрящевой и нервной ткани.

Хитозан – азотсодержащий полисахарид, который является основной составляющей наружного покрова насекомых, ракообразных и паукообразных. Этот биоматериал получают из хитиновых панцирей ракообразных и моллюсков. В настоящее время заслуживает внимания комбинированный по составу препарат – коллагеново-хитозановый комплекс. В ходе лабораторных и клинических исследований была показана его инертность и способность сохранять жизнеспособность клеточной культуры как in vitro , так и in vivo . Этот комплекс разрешен Минздравом РФ в качестве перевязочного, ранозаживляющего средства и уже используется в клинической практике в хирургии и стоматологии.

Современные возможности тканевой инженерии

Большинство исследований в области тканевой инженерии направлены на получение того или иного эквивалента тканей. Самое изученное направление тканевой инженерии – реконструкция соединительной ткани, особенно костной. В первой работе в этой области была описана реконструкция костно-хрящевого фрагмента бедренной кости кролика. Основной проблемой, с которой столкнулись исследователи, был выбор биоматериала и взаимодействие костной и хрящевой тканей в графте. Эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани. Затем полученные остеобласты наносят на различные материалы, поддерживающие их деление, – донорскую кость, PGA, коллагеновые матрицы, пористый гидроксиапатит и др. Графт сразу помещают в место дефекта или предварительно выдерживают в мягких тканях. Основной проблемой таких конструкций исследователи считают несоответствие скорости образования кровеносных сосудов в новой ткани и сроков жизни клеток в глубине графта. Для решения этой проблемы графт размещают около крупных сосудов.

Гистогенез мышечных тканей в большой степени зависит от развития нервно-мышечных взаимодействий. Отсутствие адекватной иннервации конструкций мышечных тканей пока не позволяет создать функционирующие тканевые эквиваленты поперечно-полосатой мышечной ткани. Гладкая мускулатура менее чувствительна к денервации, т.к. имеет некоторую способность к автоматизму. Гладкомышечные тканевые конструкции используют при создании таких органов, как мочеточник, мочевой пузырь, кишечная трубка. В последнее время все большее внимание уделяется попыткам реконструкции сердечной мышцы с помощью графтов, содержащих сердечные миоциты, полученные путем направленной дифференцировки малодифференцированных клеток костного мозга.

Одним из самых важных направлений в тканевой инженерии является изготовление эквивалентов кожи. Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых поверхностей.

Основными точками приложения тканевой инженерии в кардиологии можно считать создание искусственных клапанов сердца, реконструкцию крупных сосудов и капиллярных сетей. Имплантаты из синтетических материалов недолговечны и часто приводят к образованию тромбов. При использовании трубчатых (сосудистых) графтов на биодеградируемых матрицах получены положительные результаты в экспериментах на животных, однако нерешенной проблемой остается контролируемая прочность и сила сопротивления стенок графта пульсовому давлению крови.

Создание искусственных капиллярных сетей актуально при лечении патологий микроциркуляции крови при таких заболеваниях, как облитерирующий эндартериит, сахарный диабет и др. Положительные результаты здесь получены при использовании биодеградируемых графтов, выполненных в виде сосудистой сети.

Восстановление органов дыхания, таких как гортань, трахея и бронхи, также возможно с помощью тканевых конструкций из биодеградируемых или композитных материалов с нанесенными на них эпителиальными клетками и хондробластами.

Заболевания и пороки развития тонкого кишечника, сопровождающиеся его значительным укорочением, приводят к тому, что пациенты вынуждены пожизненно получать специальные питательные смеси и парентеральные растворы. В таких случаях удлинение функциональной части тонкого кишечника – единственная возможность облегчить их состояние. Алгоритм изготовления графта сводится к следующему: на биодеградируемую мембрану наносятся клетки эпителиального и мезенхимального происхождения и помещаются в сальник или брыжейку кишки для созревания. Спустя определенное время собственную кишку соединяют с графтом. Эксперименты на животных показали улучшение всасывающей активности, однако из-за отсутствия иннервации искусственная кишка не обладает способностью к перистальтике и регуляции секреторной активности.

Основная сложность в тканевой инженерии печени заключается в формировании трехмерной структуры ткани. Оптимальной биоматрицей для клеточной культуры является внеклеточный матрикс печени. Исследователи полагают, что к успеху приведет применение пористых биополимеров с заданными свойствами. Предпринимаются попытки применения постоянного магнитного поля для трехмерной организации клеточной культуры. Остаются нерешенными проблемы кровоснабжения больших по размерам графтов и отвода желчи, поскольку в графтах отсутствуют желчные протоки. Однако существующие методики уже позволяют компенсировать некоторых генетические аномалии печеночных ферментных систем, а также ослабить проявления гемофилии у лабораторных животных.

Конструирование желез внутренней секреции находится на стадии экспериментальной проверки методик на лабораторных животных. Наибольшие успехи достигнуты в тканевой инженерии слюнных желез, получены конструкции, содержащие клетки поджелудочной железы.

Пороки развития мочевыделительной системы составляют до 25% всех пороков развития. Тканевая инженерия в этом направлении медицины очень востребована. Создание эквивалентов почечной ткани – достаточно сложная задача, и решить эту проблему пытаются с помощью технологий прямого органогенеза, используя эмбриональные закладки почечной ткани. На лабораторных животных была показана возможность восстановления различных органов и тканей мочевыделительной системы.

Одной из важнейших задач является восстановление органов и тканей нервной системы. Тканеинженерные конструкции могут быть использованы для восстановления как центральной, так и периферической нервной системы. В качестве клеточного материала для репарации спинного мозга могут быть использованы клетки обонятельных луковиц и трехмерные биодеградируемые гели. Для периферической нервной системы используют биодеградируемые трубчатые графты, внутри которых рост аксона осуществляется по шванновским клеткам.

Создание искусственных органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов. В ближайшее время эти технологии будут внедряться во все области медицины.

По материалам журнала «Клеточная трансплантология и тканевая инженерия», 2005, № 1

Что если бы мы могли отращивать части тела, словно морская звезда? Фантазия это или реальность? «К & З» решил разобраться, что представляет собой тканевая инженерия, и, самое главное, доступна ли она в России.


Что такое тканевая инженерия

На самом деле наш организм способен к регенерации, более того, он занимается этим каждый день: кости восстанавливаются каждые десять лет, а кожа меняется каждые две недели. Но этого, конечно, недостаточно. Из-за болезней, травм и просто с возрастом наши ткани и целые органы разрушаются и умирают. Как замедлить этот процесс и восстановить то, чего уже нет? Этими вопросами занимается передовое направление регенеративной медицины - тканевая инженерия, позволяющая наращивать утраченные кожные покровы и части органов, например, сердца или мочевого пузыря.

Для чего необходима тканевая инженерия

Некроз ткани ввиду болезни, травмы или врожденных аномалий - проблема номер один в сфере здравоохранения по всему миру. Потребность в трансплантации растет в арифметической прогрессии во всех странах. Классическая современная медицина вылечить многие хронические заболевания на данный момент неспособна - возможны только коррекционные процедуры, однако найти полностью совместимого донора - это тоже вызов.

Сегодня одним из основных методов восстановления органов и тканей в случаях, когда пересадка собственного материала невозможна, остается его трансплантация - от живого донора или недавно умершего человека. Главное в этом процессе - максимальная биологическая совместимость донора и реципиента. Но и в этом случае иммунная система будет сопротивляться и мешать приживлению пересаженного органа или ткани. Потому пациентам, перенесшим трансплантацию, временно или пожизненно назначают специальные препараты - иммунодепрессанты. По сути, они подавляют собственную иммунную систему человека. Но, несмотря на многие усилия, очень часто пересаженный орган не приживается.

Следуя принципу «не навреди», ученые и врачи давно искали способы восстанавливать ткани и органы силами собственного организма пациента. Для этого появился целый раздел реконструктивной хирургии, основанной на микрохирургических техниках. Пришить или пересадить палец при травме, например, с ноги на руку, восстановить молочную железу после удаления злокачественной опухоли и даже вернуть пациенту значительную часть лица - после травмы, онкологии или ранения. Но микрохирургия не всесильна. Так начала расцветать тканевая инженерия, которая появилась задолго до микрохирургии.

Немного из истории вопроса

Впервые об этом еще в конце XIX века задумался американский врач Лео Лёб. В 1897 году он провел эксперимент: наблюдал, как в свернувшейся крови и лимфе делились клетки. Опубликовав свои наблюдения, он, однако, не раскрыл точных параметров опыта, чем сделал эту работу еще более интригующей. Вслед за ним к этой теме с разных сторон пытались подойти многие ученые, но лишь спустя десять лет его коллеге и соотечественнику - ученому Россу Харрисону - удалось вырастить и поддерживать живыми нервные волокна и клетки, взятые из ткани эмбриона лягушки. А уже в 1912 году французский хирург Алексис Каррель вместе с коллегами смог поддерживать жизнь небольшого участка сердца куриного эмбриона. Этот биоматериал оставался жизнеспособным и даже рос в течение 24 лет!

Способы выращивания ткани

С тех пор тканевая инженерия продвинулась далеко вперед. Сейчас для выращивания ткани используются разные способы, но один из основных - scaffold - скаффолд-технология . Экспериментаторы из разных стран практикуют ее с 90-х годов. По этой технологии за образец берутся клетки живого организма: кусочек ткани или какой-то отдельный орган. Затем с помощью ферментов его разбирают на отдельные клетки и культивируют их в течение четырех - шести недель.

Следующий этап - пересадка размножившихся клеток на скаффолд, специальную временную матрицу. Внешне скаффолд можно принять за хлопчатобумажную ткань, вполне подходящую для блузки или рубашки, но на самом деле это сложно сконструированный искусственный материал. На таком каркасе выращивается биоматериал, предназначенный для пересадки человеку. Конструкция имплантируется туда, где отсутствуют ткани, например, на уретру или почку. Скаффолд выступает как своеобразный курьер для новых клеток. Как только поврежденная ткань восстанавливается, доставщик рассасывается, исчезая без следа.

Яркий пример такой работы - реконструкция мочевого пузыря американским хирургом Энтони Аталой для Люка Масселлы, десятилетнего мальчика с врожденным пороком развития позвоночника - расщеплением. Болезнь парализовала мочевой пузырь ребенка, и к моменту, когда родители обратились к врачу за помощью, почки уже отказывали. «На вырост» взяли ткань мочевого пузыря размером с половину почтовой марки. Культивация клеток в лабораторных условиях заняла четыре недели. Затем команда Аталы создала скаффолд в форме мочевого пузыря, внутреннюю оболочку этого каркаса покрыли клетками, выстилающими «оригинальный» орган, а внешнюю - мышечными. Модель поместили в биореактор (медицинский аналог печи) для дозревания. Через шесть - восемь недель полностью сформировавшийся орган был пересажен. Таким же замысловатым способом Атале удалось вырастить сердечный клапан и даже ухо. С ним, кстати, пришлось повозиться: в форму был посеян хрящ пациента, который, пробыв в биореакторе несколько недель, превратился в самостоятельное скаффолд-ухо. Для более сложных органов, например сердца, коллега Аталы китайский ученый Тао Жу разработал технику, при которой используются 3D-принтеры. Вместо чернил в картриджи заливаются человеческие клетки, из которых в течение часа буквально печатается сердце, и уже через 46 часов оно готово к использованию.

В качестве каркаса применяются и донорские органы. Возьмем печень: с помощью специальных средств из нее удаляют все клетки донора, потом в опустошенный «скелет» вводятся клетки пациента - изнутри и снаружи. Клетки пациента - гарантия того, что отторжения со стороны организма не будет. Тканевая инженерия пока относится к экспериментальной науке, но уже имеющиеся опыты доказывают: создавать с помощью данной методики можно все - сердечные клапаны, кровеносные сосуды, печень, мышцы, уши и пальцы человека. Ученые надеются, что новая методика поможет также справиться с еще одной острой проблемой трансплантологии - дефицитом донорских органов.

Аутотрансплантация в эстетической медицине

Сегодня обычная аутотрансплантация широко применяется при ожогах, травмах хрящей, сухожилий и даже костей. На данный момент тканевая инженерия на уровне медицины красоты не может предложить каких-то выдающихся вещей, но кое-что есть. В эстетической медицине широко применяют операцию ­аутотрансплантации хрящевой и жировой ткани. Собственная хрящевая ткань гораздо лучше приживается при ринопластике и позволяет гибко моделировать форму носа. При гениопластике с помощью своей ткани можно легко сменить угол подбородка. Установка хрящевых имплантатов используется и в малярпластике для увеличения объема скуловой области.

Регенеративная медицина в России

В России ситуация с тканевой инженерией не такая радужная, органы никто пока не выращивает, есть регенеративные техники в кардиологии, используется экстракорпоральная гемакоррекция. Проводятся эксперименты по 3D-печати, но на данный момент даже с юридической точки зрения проводить такие операции невозможно.

Регенеративная медицина, в частности выращивание стволовых клеток вне человеческого тела, одно из главных и важных событий в мировой практике. Совсем недавно, в 2014 году, ученым из Института физико-химических исследований Японии удалось вернуть зрение 70-летней женщине, а в этом году японцы смогли вырастить кожу, волосяные луковицы и мини-печень. Уже сейчас медицине доступно выращивание хрящей, тканей и некоторых цельных органов. Не за горами - сердце, поджелудочная железа и нервная ткань, мозг. Пока что статистика не радует: в минуту в мире умирают два человека, которых можно было бы спасти с помощью пересадки собственной ткани. Аутотрансплантация - это будущее, с помощью которого можно будет спасти миллионы жизней.

Мезенхимальные стволовые клетки обладают возможностью попадать в пораженные ткани организма, и это уже доказано. Эта способность МСК используется учеными для доставки лечебных генов и лекарств в ткани.

Системно введенная стволовая клетка работает следующим образом. После попадания в ток крови, она движется вместе с кровью, и когда она встречает агенты, которые демонстрируют наличие повреждения, она в 10 раз сильнее прилипает к стенке сосуда. Таким образом, стволовая клетка останавливается именно там, где есть повреждение.

В зоне воспаления она вырабатывает паракринные факторы (то есть оказывает действие на соседние клетки), лечит, а потом умирает. От нее практически ничего не остается.

Если стволовая клетка доходит до зоны повреждения, естественно, возникает вопрос, нельзя ли доставить вместе с ней лекарства или еще что-нибудь. В первую очередь этот вопрос возникает в отношении опухоли. Опухоль тоже распознается как повреждение, поэтому МСК приходят и в строму опухоли. В связи с этим возникла идея вставлять в МСК гены, разрушающие опухоль (а такие гены есть). Таким образом, стволовая клетка используется как средство доставки агента.

Такие эксперименты широко проводились за рубежом. Они достаточно дорогие, требуют соответствующей метки, сложной аппаратуры для наблюдений. В силу данных причин, к сожалению, в России эти опыты проводились мало.

Наноалмазы

В качестве средств доставки лекарств и генов также используются наноалмазы. Наноалмазы из организма уходят достаточно медленно, они попадают к нам не только в кровь, но и в лимфу, тканевую жидкость, а уходят с потом, мочой и калом. Но зато алмаз химически инертен, то есть мы не вносим в организм никакой химии. Поскольку алмаз – это очень маленькая механическая частичка, то он не наносит нам вреда ни с механических, ни с химических позиций. Зато он сможет доставить нам нужные лекарства. Наноалмазы попадают в зону, где находятся взрослые стволовые клетки, при этом даже без всяких лекарств они активируют кроветворную систему.

Это лишь первые эксперименты, но если мы пойдем по этому пути, то мы сможем продукты МСК применять вместо клеток. Культуры клеток, естественно, надо выращивать, хранить, это очень трудоемкий процесс. А вот их продукты будут получаться заодно.

Наноалмазы совместно со стволовыми клетками и их продуктами – очень перспективная возможность снабжения генами, лекарствами проблемных тканей и органов. В этом вопросе еще много неизвестного. Но это направление может получить очень бурное развитие, таким образом, могут быть созданы новые способы лечения, безопасные и эффективные – то, что и требуется от лекарств. В этом отношении стволовые клетки признаются надеждой фармакологии современности.

Тканевая инженерия

Тканевая инженерия - самая молодая, но, несомненно, очень перспективная отрасль медицины. Ее задачей является создание новых материалов для реставрации/замены поврежденных тканей или даже органов.

Тканевая инженерия – нацелена на создание биологических заместителей тканей и органов.

Тканевая инженерия базируется на междисциплинарном подходе. При этом новейшие испытания в сфере стволовых клеток открывают новое будущее для развития этого направления. Стволовые клетки могут использоваться для выращивания из них тканей.

Самым первым направлением в тканевой инженерии было создание эквивалентов кожи. Ведь часто требуется восстановление довольно больших участков кожи после травм, ожогов. Обычно у больного берут кожу в других местах и пересаживают на поврежденный участок. А можно взять МСК этого человека, сделать некий каркас, посадить на него клетки и прикрыть им поврежденную часть. Таким образом, создается полученная искусственным путем кожа. При этом кожа будет не искусственной, а настоящей!

Живые равнозначные фрагменты кожи, в составе которых присутствуют донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти системы улучшают заживление поверхностей пораженных ожогами. В России этим направлением активно занимаются некоторые клиники в сотрудничестве с НИИ им. Н.В. Склифософского, Федеральный медицинский биофизический центр им. Бурназяна и др.

Разработка графтов ведется в различных направлениях медицины: кардиология (искусственные клапаны сердца, реконструкция крупных сосудов и капиллярных сетей); восстановление органов дыхания (гортань, трахея и бронхи), тонкого кишечника, печени, органов мочевыделительной системы, желез внутренней секреции и нейронов.

Стволовые клетки нашли широкое применение в области тканевой инженерии. Некоторые ученые считают возможным использовать наночастицы металлов для контроля роста клеток, влияя на них магнитными полями разной направленности. Например, таким образом удалось создать такие сложные структуры, как элементы сетчатки глаза.

Создание искусственных тканей и органов позволит улучшить качество жизни, увеличит выживаемость пациентов и даст возможность отказаться от трансплантации донорских органов.

Больших успехов в этой области добилась группа ученых под руководством проф. Энтони Атала в США. За прошедшие десять лет профессору Энтони Атале удалось вырастить и трансплантировать людям несколько десятков мочевых пузырей. Сегодня в лаборатории Аталы выращивают более двух десятков типов тканей – от сердечных клапанов и кровеносных сосудов до мышц пальцев. Перспективной биоинженерной технологией является выращивание из стволовых клеток полноценных коренных зубов. Год от года в этом направлении появляются все новые достижения. Зубы, выращенные при помощи стволовых клеток значительно более органично встраиваются в зубочелюстную систему и не вызывают физического и психологического отторжения. Как показывают предварительные расчеты, стоимость подобного протезирования не будет значительно превышать стоимость обычного искусственного протезирования. Эксперты считают, в перспективе, данная технология будет использоваться в стоматологии лет через 5. Но и этот прогноз, согласитесь, внушает немало надежд! Эта идея затрагивает интересы многих людей. Среднестатистический европеец к пятидесяти годам теряет около четверти собственных зубов.

В стоматологии стволовые клетки возможно использовать для выращивания полностью утраченного зуба, для запуска процесса самовосстановления, самореставрации частично разрушенного зуба или его элементов, для лечения пародонтоза и других заболеваниях десен. Весьма возможное и перспективное применение данной технологии – борьба с такими пороками развития зубочелюстной системы, как волчья пасть или заячья губа.

В области тканевой инженерии есть немало начинаний, которые пока кажутся фантастическими. Например, попытки вырастить в лабораторных условиях нервы, сделать мышцы, протезы органов зрения или слуховой аппарат. Работа в этом направлении интенсивно ведется в научных центрах разных стран. И возможно, многие идеи станут реальностью в ближайшие годы.

Тут можно вспомнить лозунг, который Генри Форд вывешивал на своих заводах для рабочих у поточных линий: «У нас есть запасные части для автомобилей, но помни, что Господь Бог для человека запчастей не создал. Будь осторожен!» Но теперь мы можем возразить, что хотя Господь Бог не создал для нас запчастей, но мы их создаем своим разумом, своими руками.