Электроэнцефалография. введение. Характеристика и методика проведения электроэнцефалографии. Сроки могут отличаться в зависимости от

Электроэнцефалография - это метод исследования электрической активности головного мозга. Метод основан на принципе регистрации электрических потенциалов, появляющихся в нервных клетках в процессе их деятельности. Электрическая активность головного мозга мала, она выражается в миллионных долях вольта. Изучение биопотенциалов мозга производится поэтому при помощи специальных, высокочувствительных измерительных приборов или усилителей, называемых электроэнцефалографами (рис.). С этой целью на поверхность черепа человека накладываются металлические пластинки (электроды), которые соединяют проводами со входом электроэнцефалографа. На выходе аппарата получается графическое изображение на бумаге колебаний разности биопотенциалов головного мозга, называемое электроэнцефалограммой (ЭЭГ).

Электроэнцефалограф

Данные ЭЭГ оказываются различными у здорового и больного человека. В состоянии покоя на ЭЭГ взрослого здорового человека видны ритмические колебания биопотенциалов двух типов. Более крупные колебания, со средней частотой 10 в 1 сек. и с напряжением, равным 50 мкв, называются альфа-волнами. Другие, более мелкие колебания, со средней частотой 30 в 1 сек. и напряжением, равным 15-20 мкв, называются бета-волнами. Если мозг человека переходит от состояния относительного покоя к состоянию деятельности, то альфа-ритм ослабевает, а бета-ритм усиливается. Во время сна как альфа-ритм, так и бета-ритм уменьшаются и появляются более медленные биопотенциалы с частотой 4-5 или 2-3 колебания в 1 сек. и частотой 14-22 колебания в 1 сек. У детей ЭЭГ отличается от результатов исследования электрической активности головного мозга у взрослых и приближается к ним по мере полного созревания мозга, т. е. к 13-17 годам жизни.

При различных заболеваниях мозга на ЭЭГ возникают разнообразные нарушения. Признаками патологии на ЭЭГ покоя считаются: стойкое отсутствие альфа-активности (десинхронизация альфа-ритма) или, наоборот, резкое ее усиление (гиперсинхронизация); нарушение регулярности колебаний биопотенциалов; а также появление патологических форм биопотенциалов - высокоамплитудных медленных (тета- и дельта-волн, острых волн, комплексов пик-волна и пароксизмальных разрядов и т. д. По этим нарушениям врач-невропатолог может определить тяжесть и до известной степени характер мозгового заболевания. Так, например, если в головном мозге имеется опухоль или произошло кровоизлияние в мозг, электроэнцефалографические кривые дают врачу указание, где (в какой части мозга) это повреждение находится. При на ЭЭГ даже в межприпадочном периоде можно наблюдать возникновение на фоне обычной биоэлектрической активности острых волн или комплексов пик-волна.

Особенно важна электроэнцефалография когда встает вопрос о необходимости операции на мозге для удаления у больного опухоли, абсцесса или инородного тела. Данные электроэнцефалографии в сочетании с другими методами исследования используют, намечая план будущей операции.

Во всех тех случаях, когда при осмотре больного с заболеванием ЦНС у врача-невропатолога возникают подозрения о структурных поражениях головного мозга, целесообразно электроэнцефалографическое исследование, С этой целью рекомендуется направлять больных в специализированные учреждения, где работают кабинеты электроэнцефалографии.

Электроэнцефалография (греч. enkephalos - головной мозг, grapho - записываю) - метод исследования деятельности головного мозга человека и животных на основании изучения электрической активности различных его отделов.

Экспериментальные работы показали, что под влиянием различных внешних раздражений в головном мозге возникают электрические колебания. Так называемые спонтанные колебания, т. е. колебания биопотенциалов, не связанные с наносимыми раздражениями, впервые выявил И. М. Сеченов в 1882 г. в головном мозге лягушки. В 1913-1925 гг. В.В. Правдич-Неминский при помощи струнного гальванометра обнаружил у собак в биоэлектрической активности головного мозга целый ряд ритмических процессов.

В 1929 г. Бергер (Н. Berger), применив струнный гальванометр, зарегистрировал биоэлектрическую активность коры головного мозга человека. Показав возможность отводить биоэлектрическую активность от неповрежденной поверхности головы, он открыл перспективность использования этого метода при обследовании больных с нарушениями деятельности головного мозга. Однако электрическая активность головного мозга является очень слабой (величина биопотенциалов составляет в среднем 5-500 мкВ).

Загадок в человеческом организме много, и не все пока подвластны медикам. Самая сложная и запутанная из них, пожалуй, головной мозг. Приоткрыть завесу тайны помогают врачам различные методы исследования мозга, например электроэнцефалография. Что это такое и чего ждать от процедуры пациенту?

Кому назначается обследование методом электроэнцефалографии

Электроэнцефалография (ЭЭГ) позволяет уточнить многие диагнозы, связанные с инфекциями, травмами и нарушениями работы головного мозга.

Врач может направить на обследование, если:

  1. Есть вероятность эпилепсии. Мозговые волны в этом случае показывают особую эпилептиформную активность, которая выражается в измененной форме графиков.
  2. Требуется установить точное местонахождение травмированного участка мозга или опухоли.
  3. Имеются некоторые генетические заболевания.
  4. Есть серьезные нарушения режима сна и бодрствования.
  5. Нарушена работа сосудов головного мозга.
  6. Нужна оценка эффективности проводимого лечения.

Метод электроэнцефалографии применим как у взрослых, так и у детей, он нетравматичный и безболезненный. А четкая картина работы нейронов мозга в разных его участках дает возможность прояснить характер и причины неврологических нарушений.

Метод исследования мозга электроэнцефалография - что это?

Такое обследование базируется на регистрации биоэлектрических волн, испускаемых нейронами коры головного мозга. При помощи электродов активность нервных клеток улавливается, усиливается и прибором переводится в графический вид.

Полученная кривая характеризует процесс работы разных участков мозга, его функциональное состояние. В нормальном состоянии она имеет определенную форму, а отклонения диагностируются с учетом изменения внешнего вида графика.

ЭЭГ может выполняться в различных вариантах. Помещение для него изолировано от посторонних звуков и света. Обычно процедура занимает 2-4 часа и проводится в поликлинике или лаборатории. В некоторых случаях проведение электроэнцефалографии с депривацией сна требует большего времени.

Метод позволяет врачам получить объективные данные о состоянии головного мозга, даже когда пациент находится в бессознательном состоянии.

Как проводится ЭЭГ головного мозга

Если врачом назначена электроэнцефалография, что это такое для пациента? Ему предложат сесть в удобном положении или прилечь, наденут на голову фиксирующий электроды шлем из эластичного материала. Если запись предполагается длительная, то в местах соприкосновения электродов с кожей наносится специальная проводящая паста или коллодий. Электроды не доставляют каких-либо неприятных ощущений.

ЭЭГ не предполагает каких-либо нарушений целостности кожи либо введения лекарственных средств (премедикации).

Рутинная запись мозговой активности происходит для пациента в состоянии пассивного бодрствования, когда он спокойно лежит или сидит с закрытыми глазами. Это довольно сложно, время тянется медленно и нужно бороться со сном. Лаборант периодически проверяет состояние пациента, просит открывать глаза и выполнять определенные задания.

Во время исследования пациент должен свести к минимуму любую двигательную активность, которая создавала бы помехи. Хорошо, если в лаборатории удается зафиксировать интересующие медиков неврологические проявления (судороги, тики, эпилептический припадок). Иногда приступ у эпилептиков провоцируется целенаправленно, чтобы понять его тип и происхождение.

Подготовка к проведению ЭЭГ

Накануне исследования стоит вымыть голову. Волосы лучше не заплетать и не использовать какие-либо средства для укладки. Заколки и зажимы оставить дома, а длинные волосы собрать в хвост, если требуется.

Дома стоит оставить и металлические украшения: серьги, цепочки, пирсинг с губ и бровей. Перед тем как войти в кабинет, отключить мобильный телефон (не только звук, а совсем), чтобы не создавать помех чувствительным датчикам.

Перед обследованием нужно поесть, чтобы не испытывать чувства голода. Желательно избегать любых волнений и сильных переживаний, но принимать какие-либо успокоительные препараты не следует.

Может понадобиться салфетка или полотенце, чтобы стереть остатки фиксирующего геля.

Пробы во время ЭЭГ

Для того чтобы отследить реакцию нейронов головного мозга в различных ситуация, и расширить показательные возможности метода, обследование электроэнцефалография включает несколько тестов:

1. Проба на открывание-закрывание глаз. Лаборант убеждается, что пациент в сознании, слышит его, выполняет инструкции. Отсутствие паттернов на графике в момент открывания глаз говорит о патологии.

2. Проба с фотостимуляцией, когда во время записи в глаза пациенту направляют вспышки яркого света. Таким образом выявляется эпилептиморфная активность.

3. Проба с гипервентиляцией, когда испытуемый в течение нескольких минут произвольно глубоко дышит. Частота дыхательных движений в это время немного снижается, но повышается содержание кислорода в крови и, соответственно, увеличивается подача оксигенированной крови в мозг.

4. Депривация сна, когда пациент погружается в непродолжительный сон с помощью седативных препаратов или остается в стационаре для суточного наблюдения. Это позволяет получить важные данные об активности нейронов в момент пробуждения и засыпания.

5. Стимуляция умственной активности заключается в решении несложных задач.

6. Стимуляция мануальной активности, когда пациенту предлагают выполнить задание с предметом в руках.

Все это дает более полную картину функционального состояния головного мозга и заметить нарушения, которые имеют незначительное внешнее проявление.

Продолжительность проведения электроэнцефалограммы

Время процедуры может быть разным в зависимости от целей, поставленных врачом, и условий конкретной лаборатории:

  • 30 минут и более, если удается быстро зарегистрировать искомую активность;
  • 2-4 часа в стандартном варианте, когда пациент обследуется полулежа в кресле;
  • 6 и более часов при ЭЭГ с депривацией дневного сна;
  • 12-24 часа, когда исследуются все фазы ночного сна.

Запланированное время процедуры может быть изменено на усмотрение врача и лаборанта в любую сторону, ведь если отсутствуют характерные паттерны, соответствующие диагнозу, ЭЭГ придется повторять, потратив лишнее время и средства. А если все необходимые записи получены, нет смысла мучить пациента вынужденным бездействием.

Для чего нужен видеомониторинг во время ЭЭГ

Иногда электроэнцефалография головного мозга дублируется видеозаписью, на которой фиксируется все, что происходит во время исследования с пациентом.

Видеомониторинг назначается больным эпилепсией, чтобы соотнести, как поведение во время приступа соотносится с мозговой активностью. Сопоставление по таймеру характерных волн с картинкой может прояснить пробелы в диагнозе и помочь врачу разобраться в состоянии испытуемого для более точного лечения.

Результат электроэнцефалографии

Когда пациенту проведена электроэнцефалография, заключение выдается на руки вместе с распечатками всех графиков волновой активности различных участков головного мозга. Кроме этого, если проводился и видеомониторинг, запись сохраняется на диске или флеш-накопителе.

На консультации у невролога лучше показать все результаты, чтобы врач мог оценить особенности состояния пациента. Электроэнцефалография головного мозга не является основанием для диагноза, но значительно проясняет картину заболевания.

Чтобы на графиках четко были видны все мельчайшие зубцы, рекомендуется хранить распечатки в расправленном виде в твердой папке.

Шифровка от мозга: виды ритмов

Когда пройдена электроэнцефалография, что показывает каждый график - понять самостоятельно крайне сложно. Врач поставит диагноз на основе изучения изменений активности участков мозга во время исследования. Но если ЭЭГ была назначена, то причины были вескими, и осознанно подойти к своим результатам не помешает.

Итак, у нас на руках распечатка таеого обследования, как электроэнцефалография. Что это такое - ритмы и частоты - и как определить границы нормы? Основные показатели, которые фигурируют в заключении:

1. Альфа-ритм. Частота в норме колеблется в пределах 8-14 Гц. Между большими полушариями может наблюдаться разница до 100 мкВ. Патологию альфа-ритма характеризуют асимметрия между полушариями, превышающая 30 %, показатель амплитуды выше 90 мкВ и ниже 20.

2. Бета-ритм. В основном фиксируется на передних отведениях (в лобных долях). Для большинства людей типична частота 18-25 Гц с амплитудой не выше 10 мкВ. О патологии говорит увеличение амплитуды свыше 25 мкВ и стойкое распространение бета-активности на задние отведения.

3. Дельта-ритм и Тета-ритм. Фиксируются только во время сна. Появление данных активностей в период бодрствования сигнализирует о нарушении питания тканей мозга.

5. Биоэлектрическая активность (БЭА). Нормальный показатель демонстрирует синхронность, ритмичность, отсутствие пароксизмов. Отклонения проявляются при эпилепсии раннего детского возраста, предрасположенности к судорогам и депрессии.

Чтобы результаты исследования были показательными и информативными, важно соблюдать в точности назначенную схему лечения, не отменяя препараты перед исследованием. Исказить картину может принятый накануне алкоголь или энергетические напитки.

Для чего нужна электроэнцефалография

Для пациента преимущества проведения исследования очевидны. Врач может проверить корректность назначенной терапии и поменять ее в случае необходимости.

У страдающих эпилепсией, когда наблюдением установлен период ремиссии, ЭЭГ может показать ненаблюдаемые внешне приступы, которые все еще требуют медикаментозного вмешательства. Или избежать необоснованных социальных ограничений, уточнив особенности течения болезни.

Исследование также может содействовать ранней диагностике новообразований, сосудистых патологий, воспалений и дегенераций мозга.

Электроэнцефалогр а фия (от электро..., греч. enkephalos - головной мозг и...графия), метод исследования деятельности головного мозга животных и человека; основан на суммарной регистрации биоэлектрической активности отдельных зон, областей, долей мозга.

В 1929 г. Бергер (Н. Berger), применив струнный гальванометр, зарегистрировал биоэлектрическую активность коры головного мозга человека. Показав возможность отводить биоэлектрическую активность от неповрежденной поверхности головы, он открыл перспективность использования этого метода при обследовании больных с нарушениями деятельности головного мозга. Однако электрическая активность головного мозга является очень слабой (величина биопотенциалов составляет в среднем 5-500 мкВ). Дальнейшее развитие этих исследований и их практическое использование стало возможным после создания усилительной электронной аппаратуры. Она дала возможность получить значительное усиление биопотенциалов и вследствие своей безинерционности позволила наблюдать колебания без искажения их формы.

Для регистрации биоэлектрической активности используют электроэнцефалограф , содержащий электронные усилители с достаточно высоким коэффициентом усиления, низким уровнем собственных шумов и полосой частот от 1 до 100 Гц или выше. Кроме этого, в электроэнцефалограф входит регистрирующая часть, представляющая осциллографическую систему с выходом на чернильное перо, электроннолучевой или шлейфный осциллографы. Отводящие электроды, соединяющие исследуемый объект со входом усилителя, могут быть наложены на поверхность головы или вживлены на более или менее длительный срок в исследуемые участки головного мозга. В настоящее время начинает развиваться телеэлектроэнцефалография, которая позволяет регистрировать электрическую активность головного мозга на расстоянии от объекта. В этом случае биоэлектрическая активность модулирует частоту передатчика ультракоротких волн, расположенного на голове человека или животного, а входное устройство электроэнцефалографа принимает эти сигналы. Запись биоэлектрической активности головного мозга называют электроэнцефалограммой (ЭЭГ), если она зарегистрирована от неповрежденного черепа, и электрокортикограммой (ЭКоГ) при регистрации непосредственно от коры головного мозга. В последнем случае метод регистрации биотоков мозга называют электрокортикографией . ЭЭГ представляют собой суммарные кривые изменений во времени разностей потенциалов, возникающих под электродами. Для оценки ЭЭГ разработаны приборы - анализаторы, автоматически разлагающие эти сложные кривые на составляющие их частоты. Большинство анализаторов содержит ряд узкополосных фильтров, настроенных на определенные частоты. На эти фильтры с выхода электроэнцефалографа подается биоэлектрическая активность. Результаты частотного анализа представляются регистрирующим прибором обычно параллельно ходу эксперимента (анализаторы Уолтера и Кожевникова). Для анализа ЭЭГ и ЭКоГ используют также интеграторы, дающие суммарную оценку интенсивности колебаний за некоторый промежуток времени. Их действие основано на измерении потенциалов конденсатора, который заряжается током, пропорциональным мгновенным значениям исследуемого процесса.

Цель ЭЭГ:

    Выявление эпилептической активности и определение типа эпилептических припадков.

    Диагностика интракраниальных очагов поражения (абсцесс, опухоли).

    Оценка электрической активности головного мозга при болезнях обмена веществ, ишемии мозга, его травмах, менингите, энцефалите, нарушении умственного развития, психических заболеваниях и лечении различными препаратами.

    Оценка степени активности головного мозга, диагностика смерти мозга.

Подготовка пациента:

    Следует объяснить пациенту, что исследование позволяет оценить электрическую активность головного мозга.

    Следует объяснить суть исследования пациенту и его родным и ответить на их вопросы.

    Перед исследованием пациент должен воздержаться от употребления напитков, содержащих кофеин; других ограничений в диете и режиме питания не требуется. Следует предупредить пациента, что если он не позавтракает перед исследованием, то у него возникнет гипогликемия, которая скажется на результате исследования.

    Пациенту следует тщательно помыть и высушить волосы для удаления остатков спреев, кремов, масел.

    ЭЭГ регистрируют в положении пациента полулежа или лежа на спине. Электроды прикрепляют к коже головы с помощью специальной пасты. Следует успокоить пациента, объяснив ему, что электроды не ударяют током.

    Пластинчатые электроды используются чаще, но если исследование проводят с помощью игольчатых электродов, следует предупредить пациента, что он будет чувствовать уколы при введении электродов.

    Следует по возможности устранить страх и тревогу у пациента, так как они существенно влияют на ЭЭГ.

    Следует выяснить, какие препараты пациент принимает. Например, прием противосудорожных, транквилизаторов, барбитуратов и других седативных препаратов следует прекратить за 24-48 ч до исследования. Детям, которые часто плачут во время исследования, и беспокойным пациентам желательно назначить седативные средства, хотя они могут повлиять на результат исследования.

    У пациента с эпилепсией может потребоваться ЭЭГ сна. В таких случаях накануне исследования он должен провести бессонную ночь, а перед исследованием ему дают седативный препарат (например, хлоралгидрат), чтобы он заснул во время регистрации ээг.

    Если ЭЭГ записывают для подтверждения диагноза смерти мозга, следует поддержать родственников пациента психологически.

Процедура и последующий уход:

    Пациента укладывают в положение лежа на спине или полулежа и прикрепляют электроды к коже головы.

    Перед тем как начать регистрацию ЭЭГ, пациента просят расслабиться, закрыть глаза и не двигаться. В процессе регистрации следует отмечать на бумаге момент, когда пациент моргнул, сделал глотательное или другие движения, так как это отражается на ЭЭГ и может явиться причиной неправильной ее интерпретации.

    Регистрацию при необходимости можно приостановить, чтобы дать пациенту передохнуть, устроиться поудобнее. Это важно, так как беспокойство и усталость пациента могут отрицательно сказаться на качестве ЭЭГ.

    После начального периода регистрации базальной ЭЭГ запись продолжают на фоне различных нагрузочных проб, т.е. действий, которые он не выполняет обычно в спокойном состоянии. Так, пациента просят быстро и глубоко дышать в течение 3 мин, что вызывает гипервентиляцию, которая может спровоцировать у него типичный эпилептический припадок или другие расстройства. Эту пробу обычно используют для диагностики припадков типа абсанса. Аналогично фотостимуляция позволяет исследовать реакцию головного мозга на яркий свет, она усиливает патологическую активность при эпилептических припадках типа абсанса или при миоклонических судорогах. Фотостимуляцию осуществляют с помощью стробоскопического источника света, мигающего с частотой 20 в секунду. ЭЭГ регистрируют при закрытых и открытых глазах пациента.

    Необходимо проследить за тем, чтобы пациент возобновил прием противосудорожных и других препаратов, который был прерван перед исследованием.

    После исследования возможны эпилептические припадки, поэтому пациенту предписывают щадящий режим и обеспечивают внимательный уход за ним.

    Следует помочь пациенту удалить остатки пасты для электродов с кожи головы.

    Если пациент перед исследованием принял седативные препараты, следует обеспечить его безопасность, например поднять борта кровати.

    Если на ЭЭГ выявлена смерть мозга, следует поддержать морально родственников пациента.

    Если припадки оказываются неэпилептическими, пациента должен обследовать психолог.

Данные ЭЭГ оказываются различными у здорового и больного человека. В состоянии покоя на ЭЭГ взрослого здорового человека видны ритмические колебания биопотенциалов двух типов. Более крупные колебания, со средней частотой 10 в 1 сек. и с напряжением, равным 50 мкв, называются альфа-волнами . Другие, более мелкие колебания, со средней частотой 30 в 1 сек. и напряжением, равным 15-20 мкв, называются бета-волнами . Если мозг человека переходит от состояния относительного покоя к состоянию деятельности, то альфа-ритм ослабевает, а бета-ритм усиливается. Во время сна как альфа-ритм, так и бета-ритм уменьшаются и появляются более медленные биопотенциалы с частотой 4-5 или 2-3 колебания в 1 сек. и частотой 14-22 колебания в 1 сек. У детей ЭЭГ отличается от результатов исследования электрической активности головного мозга у взрослых и приближается к ним по мере полного созревания мозга, т. е. к 13- 17 годам жизни. При различных заболеваниях мозга на ЭЭГ возникают разнообразные нарушения. Признаками патологии на ЭЭГ покоя считаются : стойкое отсутствие альфа-активности (десинхронизация альфа-ритма) или, наоборот, резкое ее усиление (гиперсинхронизация); нарушение регулярности колебаний биопотенциалов; а также появление патологических форм биопотенциалов - высокоамплитудных медленных (тета- и дельта-волн, острых волн, комплексов пик-волна и пароксизмальных разрядов и т. д. По этим нарушениям врач-невропатолог может определить тяжесть и до известной степени характер мозгового заболевания. Так, например, если в головном мозге имеется опухоль или произошло кровоизлияние в мозг, электроэнцефалографические кривые дают врачу указание, где (в какой части мозга) это повреждение находится. При эпилепсии на ЭЭГ даже в межприпадочном периоде можно наблюдать возникновение на фоне обычной биоэлектрической активности острых волн или комплексов пик-волна. Особенно важна электроэнцефалография когда встает вопрос о необходимости операции на мозге для удаления у больного опухоли, абсцесса или инородного тела. Данные электроэнцефалографии в сочетании с другими методами исследования используют, намечая план будущей операции. Во всех тех случаях, когда при осмотре больного с заболеванием ЦНС у врача-невропатолога возникают подозрения о структурных поражениях головного мозга, целесообразно электроэнцефалографическое исследование, С этой целью рекомендуется направлять больных в специализированные учреждения, где работают кабинеты электроэнцефалографии.

Факторы, влияющие на результат исследования

    Наводки от электрических приборов, движения глаз, головы, языка, тела (наличие артефактов на ЭЭГ).

    Прием противосудорожных и седативных препаратов, транквилизаторов и барбитуратов может маскировать судорожную активность. Острое отравление наркотическими препаратами или выраженная гипотермия вызывают снижение уровня сознания.

Другие методы

Компьютерная томография головного мозга .

КТ головного мозга позволяет получить на экране монитора с помощью компьютера серийные срезы (томограммы) головного мозга в различных плоскостях: горизонтальной, сагиттальной и фронтальной. Для получения изображения анатомических срезов различной толщины используется информация, получаемая от облучения ткани головного мозга на сотне тысяч уровнях. Специфичность и достоверность исследования повышаются с увеличением степени разрешения, которая зависит от рассчитываемой на компьютере плотности облучения нервной ткани. Несмотря на то что, МРТ превосходит КТ по качеству визуализации структур головного мозга в норме и при патологии, КТ нашла более широкое применение, особенно в острых случаях, и экономически более выгодна.

Цель

    Диагностика поражений головного мозга.

    Контроль эффективности хирургического лечения, лучевой и химиотерапии опухолей головного мозга.

    Выполнение операций на головном мозге под контролем КТ.

Оборудование

КТ-сканер, осциллоскоп, контрастное вещество (меглумина йоталамат или диатризоат натрия), 60-милли-литровый шприц, игла 19-го или 21-го калибра, внутривенный катетер и система для внутривенных вливаний на случай необходимости.

Процедура и последующий уход

    Пациента укладывают на спину на рентгеновский стол, голову при необходимости фиксируют ремешками и просят пациента не двигаться.

    Головной конец стола вдвигают в сканер, который вращается вокруг головы пациента, производя рентгенографию с шагом 1 см по дуге 180°.

    После получения этой серии срезов внутривенно вводят от 50 до 100 мл контрастного вещества в течение 1-2 мин. Внимательно следят за пациентом, с тем чтобы своевременно выявить признаки аллергической реакции (крапивница, затруднение дыхания), которая обычно появляется в течение первых 30 мин.

    После введения контрастного вещества делают другую серию срезов. Информация о срезах хранится на магнитных лентах, которую вводят в компьютер, преобразующий эту информацию в изображения, выводимые на осциллоскоп. При необходимости отдельные срезы фотографируют для изучения после исследования.

    Если была выполнена контрастная КТ, смотрят, нет ли у пациента остаточных проявлений непереносимости контрастного вещества (головная боль, тошнота, рвота), и напоминают ему, что он может перейти на обычный для него режим питания.

Меры предосторожности

    КТ головного мозга с контрастированием противопоказана пациентам с непереносимостью йода или контрастного вещества.

    Введение йодсодержащего контрастного вещества может оказать повреждающее действие на плод, особенно в I триместре беременности.

Нормальная картина

Количество радиации, проникающей через ткани, зависит от ее плотности. Плотность ткани выражается белым и черным цветом и различными оттенками серого цвета. Кость как наиболее плотная ткань имеет на компьютерной томограмме белый цвет. Спинномозговая жидкость, заполняющая желудочки гловного мозга и субарахноидальное пространство, как наименее плотная имеет на снимках черный цвет. Вещество головного мозга имеет различные оттенки серого цвета. Оценка состояния структур головного мозга производится исходя из их плотности, размеров, формы и расположения.

Отклонение от нормы

Изменение плотности в виде более светлых или темных участков на снимках, смещение сосудов и других структур наблюдаются при опухолях головного мозга, внутричерепных гематомах, атрофии, инфаркте, отеке, а также врожденных аномалиях развития мозга, в частности водянке головного мозга.

Опухоли головного мозга значительно отличаются друг от друга по своим особенностям. Метастазы обычно вызывают значительный отек на ранней стадии и могут быть распознаны при контрастной КТ.

В норме сосуды головного мозга на компьютерных томограммах не видны. Но при артериовенозной мальформации сосуды могут иметь повышенную плотность. Введение контрастного вещества позволяет лучше разглядеть пораженную область, однако в настоящее время более предпочтительным методом диагностики сосудистых поражений головного мозга является МРТ. Другим методом визуализации головного мозга является позитронно-эмиссионная томография.

ТКЭАМ - топографическое картирование электрической активности мозга - область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов (см. Видео). Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

    Сам метод картирования мозга можно разложить на три основные составляющие:

    • регистрацию данных;

      анализ данных;

      представление данных.

Регистрация данных. Используемое число электродов для регистрации ЭЭГ и ВП, как правило, варьирует в диапазоне от 16 до 32, однако в некоторых случаях достигает 128 и даже больше. При этом большее число электродов улучшает пространственное разрешение при регистрации электрических полей мозга, но сопряжено с преодолением больших технических трудностей. Для получения сравнимых результатов используется система "10-20", при этом применяется в основном монополярная регистрация. Важно, что при большом числе активных электродов можно использовать лишь один референтный электрод, т.е. тот электрод, относительно которого регистрируется ЭЭГ всех остальных точек постановки электродов. Местом приложения референтного электрода служат мочки ушей, переносица или некоторые точки на поверхности скальпа (затылок, вертекс). Существуют такие модификации этого метода, которые позволяют вообще не использовать референтный электрод, заменяя его значениями потенциала, вычисленными на компьютере.

Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ:временной,частотныйипространственный. Временный представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда - по вертикальной. Временной анализ применяют для оценки суммарных потенциалов, пиков ВП, эпилептических разрядов. Частотный анализ заключается в группировке данных по частотным диапазонам: дельта,тета,альфа,бета. Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ - это вычисление когерентности.

Способы представления данных. Самые современные компьютерные средства картирования мозга позволяют легко отражать на дисплее все этапы анализа: "сырые данные" ЭЭГ и ВП, спектры мощности, топографические карты - как статистические, так и динамические в виде мультфильмов, различные графики, диаграммы и таблицы, а также, по желанию исследователя, - различные комплексные представления. Следует особо указать на то, что применение разнообразных форм визуализации данных позволяет лучше понять особенности протекания сложных мозговых процессов.

Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга. При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях. Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры ) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее. С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока. В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР)

Электроэнцефалография - метод исследования головного мозга с помощью регистрации разности электрических потенциалов, возникающих в процессе его жизнедеятельности. Регистрирующие электроды располагают в определённых областях головы так, чтобы на записи были представлены все основные отделы мозга.

Получаемая запись - электроэнцефалограмма (ЭЭГ) - является суммарной электрической активностью многих миллионов нейронов, представленной преимущественно потенциалами дендритов и тел нервных клеток: возбудительными и тормозными постсинаптическими потенциалами и частично - потенциалами действия тел нейронов и аксонов. Таким образом, ЭЭГ отражает функциональную активность головного мозга. Наличие регулярной ритмики на ЭЭГ свидетельствует, что нейроны синхронизуют свою активность.

В норме эта синхронизация определяется главным образом ритмической активностью пейсмейкеров (водителей ритма) неспецифических ядер таламуса и их таламокортикальных проекций.

Поскольку уровень функциональной активности определяется неспецифическими срединными структурами (ретикулярной формацией ствола и переднего мозга) , эти же системы определяют ритмику, внешний вид, общую организацию и динамику ЭЭГ.

Симметричная и диффузная организация связей неспецифических срединных структур с корой определяет билатеральную симметричность и относительную однородность ЭЭГ для всего мозга (рис. 6-1 и 6-2).

МЕТОДИКА

В обычной практике ЭЭГ отводят с помощью электродов, расположенных на интактных покровах головы. Электрические потенциалы усиливают и регистрируют. В электроэнцефалографах предусмотрено 16-24 и более идентичных усилительно-регистрирующих блоков (каналов) , позволяющих одномоментно записывать электрическую активность от соответствующего количества пар электродов, установленных на голове пациента. Современные электроэнцефалографы создают на базе компьютеров. Усиленные потенциалы преобразуют в цифровую форму; непрерывная регистрация ЭЭГ отображается на мониторе и одновременно записывается на диск.

После обработки ЭЭГ может быть распечатана на бумаге. Электроды, отводящие потенциалы, представляют собой металлические пластины или стержни различной формы с диаметром контактной поверхности 0,5-1 см. Электрические потенциалы подаются на входную коробку электроэнцефалографа, имеющую 20-40 и более пронумерованных контактных гнёзд, с помощью которых к аппарату можно под соединить соответствующее количество электродов. В современных электроэнцефалографах входная коробка объединяет коммутатор электродов, усилитель и аналога-цифровой преобразователь ЭЭГ. Из входной коробки преобразованный сигнал ЭЭГ подают в компьютер, с помощью которого производят управление функциями при бора, регистрацию и обработку ЭЭГ.

Рис. 6-1 . Восходящая ретикуло-кортикальная неспецифическая система регуляции уровня функциональной активности мозга: Д 1 и Д 2 - десинхронизующие активирующие системы среднего и переднего мозга соответственно; С 1 и С 2 - синхронизующие тормозящие сомногенные системы продолговатого мозга и моста и неспецифических ядер промежуточного мозга соответственно.

Рис. 6-2. ЭЭГ взрослого бодрствующего человека: регистрируется регулярный α-ритм, модулированный в веретёна, лучше всего выраженный в затылочных отделах; реакция активации на вспышку света

ЭЭГ регистрирует разность потенциалов между двумя точками головы. Соответственно на каждый канал электроэнцефалографа подают напряжения, отведённые двумя электродами: одно на "Вход 1" , другое на "Вход 2" канала усиления.

Многоконтактный коммутатор отведений ЭЭГ позволяет коммутировать электроды по каждому каналу в нужной комбинации. Установив, например, на каком-либо канале соответствие затылочного электрода гнезду входной коробки "1" , а височного - гнезду коробки "5" , получают тем самым возможность регистрировать по этому каналу разность потенциалов между соответствующими электродами. Перед началом работы исследователь набирает с помощью соответствующих программ несколько схем отведений, которые и используют при анализе полученных записей. Для задания полосы про пускания усилителя используют аналоговые и цифровые фильтры высокой и низкой частоты. Стандартная полоса про пускания при записи ЭЭГ - 0,5-70 Гц.

Отведение и запись электроэнцефалограммы

Регистрирующие электроды располагают так, чтобы на многоканальной записи были представлены все основные отделы мозга, обозначаемые начальными буквами их латинских названий. В клинической практике используют две основные системы отведений ЭЭГ: международную систему "10-20" (рис. 6-3) и модифицированную схему с уменьшенным количеством электродов (рис. 6-4). При необходимости получения более детальной картины ЭЭГ предпочтительна схема "10-20".

Рис. 6-3. Международная схема расположения электродов " 1 0-20". Буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; т - височное отведение. Цифровые индексы уточняют положение электрода внутри соответствующей области.

Рис. 6-4. Схема регистрации ЭЭГ при моно· полярном отведении (1) с референтным электродом (R) на мочке уха и при биполярных отведениях (2). В системе с уменьшенным количеством отведений буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; Та - переднее височное отведение, Тр - заднее височное отведение. 1: R - напряжение под референтным ушным электродом; О - напряжение под активным электродом, R-O - запись, получаемая при монополярном отведении от правой затылочной области. 2: Тр - напряжение под электродом в области патологического очага; Та - напряжение под электродом, стоящим над нормальной мозговой тканью; Та-Тр, Тр-О и Ta-F - записи, получаемые при биполярном отведении от соответствующих пар электродов.

Референтным называют такое отведение, когда на "вход 1" усилителя подаётся потенциал от электрода, стоящего над мозгом, а на "вход 2" - от электрода на удалении от мозга. Электрод, расположенный над мозгом, чаще всего называют активным. Электрод, удалённый от мозговой ткани, носит название референтного.

В качестве такового используют левую (A1) и правую (А2) мочки уха. Активный электрод подсоединяют к "входу 1" усилителя, подача на который отрицательного сдвига потенциала вызывает отклонение регистрирующего пера вверх.

Референтный электрод подключают к "входу 2" . В некоторых случаях в качестве референтного электрода используют отведение от двух закороченных между собой электродов (АА), расположенных на мочках ушей. Поскольку на ЭЭГ регистрируется разность потенциалов между двумя электродами, на положение точки на кривой будут в равной мере, но в противоположном направлении влиять изменения потенциала под каждым из пары электродов. В референтном отведении под активным электродом генерируется переменный потенциал мозга. Под референтным электродом, находящимся вдали от мозга, имеется постоянный потенциал, который не проходит в усилитель переменного тока и не влияет на картину записи.

Разность потенциалов отражает без искажения колебания электрического потенциала, генерируемого мозгом под активным электродом. Однако область головы между активным и референтным электродами составляет часть электрической цепи "усилитель-объект", и наличие на этом участке достаточно интенсивного источника потенциала, расположенного асимметрично относительно электродов, будет существенно отражаться на показаниях. Следовательно, при референтном отведении суждение о локализации источника потенциала не вполне надёжно.

Биполярным называют отведение, при котором на "вход 1" и "вход 2" усилителя подсоединяют электроды, стоящие над мозгом. На положение точки записи ЭЭГ на мониторе в одинаковой мере влияют потенциалы под каждым из пары электродов, и регистрируемая кривая отражает разность потенциалов каждого из электродов.

Поэтому суждение о форме колебания под каждым из них на основе одного биполярного отведения оказывается невозможным. В то же время анализ ЭЭГ, зарегистрированных от нескольких пар электродов в различных комбинациях, позволяет выяснить локализацию источников потенциалов, составляющих компоненты сложной суммарной кривой, получаемой при биполярном отведении.

Например, если в задней височной области присутствует локальный источник медленных колебаний (Тр на рис. 6-4) , при подсоединении к клеммам усилителя переднего и заднего височных электродов (Та, Тр) получается запись, содержащая медленную составляющую, соответствующую медленной активности в задней височной области (Тр) , с наложенными на неё более быстрыми колебаниями, генерируемыми нормальным мозговым веществом передней височной области (Та).

Для выяснения вопроса о том, какой же электрод регистрирует эту медленную составляющую, на двух дополнительных каналах коммутированы пары электродов, в каждой из которых один представлен электродом из первоначальной пары, то есть Та или Тр, а второй соответствует какому-либо не височному отведению, например F и О.

Понятно, что во вновь образуемой паре (Тр-О) , включающей задний височный электрод Тр, находящийся над патологически изменённым мозговым веществом, опять будет присутствовать медленная составляющая. В паре, на входы которой подана активность от двух электродов, стоящих над относительно интактным мозгом (Та-F ) , будет регистрироваться нормальная ЭЭГ. Таким образом, в случае локального патологического коркового фокуса подключение электрода, стоящего над этим фокусом, в паре с любым другим приводит к появлению патологической составляющей на соответствующих каналах ЭЭГ. Это и позволяет определить локализацию источника патологических колебаний.

Дополнительный критерий определения локализации источника интересующего потенциала на ЭЭГ - феномен извращения фазы колебаний. Если подсоединить на входы двух каналов электроэнцефалографа три электрода следующим образом (рис. 6-5): электрод 1 - к "входу 1 " , электрод 3 - к "входу 2" усилителя.

Рис. 6-5. Фазовое соотношение записей при различной локализации источника потенциала: 1 , 2, 3 - электроды; А, Б - каналы электроэнцефалографа; 1 - источник регистрируемой разности потенциалов находится под электродом 2 (записи по каналам А и Б в противофазе) ; II - источник регистрируемой разности потенциалов находится под электродом I (записи синфазны). Стрелки указывают направление тока в цепях каналов, определяющее соответствующие направления отклонения кривой на мониторе.

Б, а электрод 2 - одновременно к "входу 2" усилителя А и "входу 1" усилителя Б; предположить, что под электродом 2 происходит положительное смещение электрического потенциала по отношению к потенциалу остальных отделов мозга (обозначено знаком "+") , т о очевидно, что электрический ток, обусловленный этим смещением потенциала, будет иметь противоположное направление в цепях усилителей А и Б, что отразится в противоположно направленных смещениях разности потенциалов - противофазах - на соответствующих записях ЭЭГ. Таким образом, электрические колебания под электродом 2 в записях по каналам А и Б будут представлены кривыми, имеющими одинаковые частоты, амплитуды и форму, но противоположными по фазе. При коммутации электродов по нескольким каналам электроэнцефалографа в виде цепочки противофазные колебания исследуемого потенциала будут регистрироваться по тем двум каналам, к разноимённым входам которых подключён один общий электрод, стоящий над источником этого потенциала.

Правила регистрации электроэнцефалограммы и функциональные пробы

Пациент во время исследования должен находиться в свето- и звукоизолированном помещении в удобном кресле с закрытыми глазами. Наблюдение за исследуемым ведут непосредственно или с помощью видеокамеры. В ходе записи маркерами отмечают значимые события и функциональные пробы.

При пробе открывания и закрывания глаз на ЭЭГ появляются характерные артефакты электроокулограммы. Возникающие изменения ЭЭГ позволяют выявить степень контактности обследуемого, уровень его сознания и ориентировочно оценить реактивность ЭЭГ.

Для выявления реагирования мозга на внешние воздействия применяют одиночные стимулы в виде короткой вспышки света, звукового сигнала. У больных в коматозном состоянии допустимо применение ноцицептивных стимулов нажатием ногтем на основание ногтевого ложа указательного пальца больного.

Для фотостимуляции используют короткие (150 мкс) вспышки света, близкого по спектру к белому, достаточно высокой интенсивности (0,1-0,6 Дж) .

Фотостимуляторы позволяют предъявлять серии вспышек, применяемые для исследования реакции усвоения ритма - способности электроэнцефалографических колебаний воспроизводить ритм внешних раздражений. В норме реакция усвоения ритма хорошо выражена на частоте мельканий, близкой к собственным ритмам ЭЭГ. Ритмические волны усвоения имеют наибольшую амплитуду в затылочных отделах. При фотосенситивных эпилептических припадках ритмическая фотостимуляция выявляет фотопароксизмальный ответ - генерализованный разряд эпилептиформной активности (рис. 6-6).

Гипервентиляцию проводят главным образом для вызывания эпилептиформной активности. Обследуемому предлагают глубоко ритмично дышать в течение 3 мин. Частота дыхания должна быть в пределах 16-20 в минуту. Регистрацию ЭЭГ начинают по меньшей мере за 1 минуту до начала гипервентиляции и продолжают в течение всей гипервентиляции и ещё не менее 3 мин после её окончания.

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

Анализ ЭЭГ про водят в ходе записи и окончательно по её завершении. Во время записи оценивают наличие артефактов (наводка полей сетевого тока, механические артефакты движения электродов, электромиограмма, электрокардиограмма и др.), принимают меры к их устранению. Про водят оценку частоты и амплитуды ЭЭГ, выделяют характерные графоэлементы, определяют их пространственное и временное распределение. Завершают анализ физиологическая и патофизиологическа я интерпретация результатов и формулирование диагностического заключения с клинико-электроэнцефалографической корреляцией.

Рис. 6-6. Фотопароксизмальный ответ на ЭЭГ при эпилепсии с генерализованными приступами. Фоновая ЭЭГ в пределах нормы. При нарастающей по частоте от 6 до 25 Гц световой ритмической стимуляции наблюдается увеличение амплитуды ответов на частоте 20 Гц с развитием генерализованных разрядов спайков, острых волн и комплексов спайк-медленная волна. d - правое полушарие; s - левое полушарие.

Основной медицинский документ по ЭЭГ - клинико-электроэнцефалографическое заключение, написанное специалистом на основе анализа "сырой" ЭЭГ.

Заключение по ЭЭГ должно быть сформулировано в соответствии с определёнными правилами и состоять из трёх частей:

1) описание основных типов активности и графоэлементов;

2) резюме описания и его патофизиологическая интерпретация;

3) корреляция результатов предыдущих двух частей с клиническими данными.

Базовый описательный термин в ЭЭГ - "активность", определяющая любую последовательность волн (α -активность, активность острых волн и др.) .

Частота определяется количеством колебаний в секунду; е ё записывают соответствующим числом и выражают в герцах (Гц) . В описании приводят среднюю частоту оцениваемой активности. Обычно берут 4-5 отрезков ЭЭГ длительностью 1 . с и высчитывают количество волн на каждом из них (рис. 6-7).

Амплитуда - размах колебаний электрического потенциала на ЭЭГ; измеряют от пика предшествующей волны до пика последующей волны в противоположной фазе, выражают в микровольтах (мкВ) (см. рис. 6-7). Для измерения амплитуды используют калибровочный сигнал. Так, если калибровочный сигнал, соответствующий напряжению 50 мкВ, имеет на записи высоту 10 мм, то, соответственно, 1 мм отклонения пера будет означать 5 мкВ. Для характеристики амплитуды активности в описании ЭЭГ принимают наиболее характерно встречающиеся максимальные её значения, исключая выскакивающие

Фаза определяет текущее состояние процесса и указывает направление вектора его изменений. Некоторые феномены на ЭЭГ оценивают количеством фаз, которые они содержат. Моно фазным называется колебание в одном направлении от изоэлектрической линии с возвратом к исходному уровню, двухфазным - такое колебание, когда после завершения одной фазы кривая переходит исходный уровень, отклоняется в противоположном направлении и возвращается к изоэлектрической линии. Полифазными называют колебания, содержащие три фазы и более. в более узком смысле термином "полифазная волна" определяют последовательность α - и медленной (обычно δ ) волны.

Рис. 6-7. Измерение частоты (1) и амплитуды (II ) на ЭЭГ. Частота измеряется как количество волн в единицу времени (1 с). А - амплитуда.

Ритмы электроэнцефалограммы взрослого бодрствующего человека

Под понятием "ритм" на ЭЭГ подразумевается определённый тип электрической активности, соответствующий некоторому определённому состоянию мозга и связанный с определёнными церебральными механизмами. При описании ритма указывается его частота, типичная для определённого состояния и области мозга, амплитуда и некоторые характерные черты его изменений во времени при изменениях функциональной активности мозга.

Альфа(α ) -ритм: частота 8-13 Гц, амплитуда до 1 00 мкВ. Регистрируется у 85-95% здоровых взрослых. Лучше всего выражен в затылочных отделах. Наибольшую амплитуду α -ритм имеет в состоянии спокойного расслабленного бодрствования при закрытых глазах. Помимо изменений, связанных с функциональным состоянием мозга, в большинстве случаев наблюдают спонтанные изменения амплитуды α -ритма, выражающиеся в чередующемся нарастании и снижении с образованием характерных "Веретён" , продолжительностью 2-8 с. При повышении уровня функциональной активности мозга (напряжённое внимание, страх) амплитуда α -ритма уменьшается. На ЭЭГ появляется высокочастотная низко амплитудная нерегулярная активность, отражающая де синхронизацию активности нейронов. При кратковременном, внезапном внешнем раздражении (особенно вспышке света) эта десинхронизация возникает резко, и в случае если раздражение не носит эмоциогенного характера, достаточно быстро (через 0,5-2 с) восстанавливается α -ритм (см. рис. 6-2) . Этот феномен называется "реакция активации", "ориентировочная реакция" , "реакция угасания α -ритма" , "реакция десинхронизации".

Бета(β )-ритм: частота 14-40 Гц, амплитуда до 25 мкВ (рис. 6-8). Лучше всего β -ритм регистрируется в области центральных извилин, однако распространяется и на задние центральные и лобные извилины. В норме он выражен весьма слабо и в большинстве случаев имеет амплитуду 5-15 мкВ. β -Ритм связан с соматическими сенсорными и двигательными корковыми механизмами и даёт реакцию угасания на двигательную активацию или тактильную стимуляцию. Активность с частотой 40-70 гц и амплитудой 5-7 мкВ иногда называют γ -ритмом, клинического значения он не имеет.

Мю(μ ) -ритм: частота 8-13 Гц, амплитуда до 50 мкВ. Параметры μ -ритма аналогичны таковым нормального α -ритма, но μ -ритм отличается от последнего физиологическими свойствами и топографией. Визуально μ -ритм наблюдают только у 5-15% испытуемых в роландической области. Амплитуда μ-ритма (в редких случаях) нарастает при двигательной активации или соматосенсорной стимуляции. При рутинном анализе μ-ритм клинического значения не имеет . Виды активности, патологические для взрослого бодрствующего человека

Тета(θ ) -активность: частота 4-7 Гц, амплитуда патологической θ -активности больше или = 40 мкВ и чаще всего превышает амплитуду нормальных ритмов мозга, достигая при некоторых патологических состояниях 300 мкВ и более (рис. 6-9).

Рис. 6-8. Вариант ЭЭГ взрослого бодрствующего человека. Во всех отведениях регистрируется β -активность с некоторым преобладанием в теменных (Р) и центральных (С) отделах.

Рис. 6-9. ЭЭГ больного 28 лет с воспалительной окклюзией на уровне задней черепной ямки и внутренней гидроцефалией. Генерализованные билатерально- синхронные θ -волны частотой 4-4,5 Гц, преобладающие в задних отделах.

Рис. 6- 1 0. ЭЭГ больной 38 лет с опухолью медиобазальных отделов левого полушария мозгас вовлечением таламических ядер (сопорозное состояние). Генерализованные δ -волны (частотой 1-3 ГЦ, амплитудой до 200 мкВ), временами преобладающие по амплитуде в левом полушарии.

Дельта (δ) -активность: частота 0,5-3 Гц, амплитуда такая же, как у е-активности (рис. 6- 10). θ - и δ -колебания могут в небольшом количестве присутствовать на ЭЭГ взрослого бодрствующего человека и в норме, но их амплитуда при этом не превышает таковую α -ритма. Патологической считают ЭЭГ, содержащую θ - и δ -колебания амплитудой более или =40 мкВ и занимающие более 15% общего времени регистрации.

Эпилептиформная активность - феномены, типично наблюдаемые на ЭЭГ больных эпилепсией. Они возникают в результате высокосинхронизованных пароксизмальных деполяризационных сдвигов в больших популяциях нейронов, сопровождающихся генерацией потенциалов действия. В результате этого возникают высокоамплитудные острой формы потенциалы, имеющие соответствующие названия.

Спайк (англ. spike - остриё, пик) - негативный потенциал острой формы, длительностью менее 70 мс, амплитудой ≥ 50 мкВ (иногда до сотен или даже тысяч мкВ).

Острая волна отличается от спайка растянутостью во времени: её длительность 70- 200 мс.

Острые волны и спайки могут комбинироваться с медленными волнами, образуя стереотипные комплексы. Спайк-медленная волна - комплекс из спайка и медленной волны. Частота комплексов спайк-медленная волна составляет 2,5-6 Гц, а период, соответственно, - 1 60-250 мс. Острая-медленная волна комплекс из острой волны и следующей за ней медленной волны, период комплекса 500-1300 мс (рис. 6-11).

Важная характеристика спайков и острых волн - их внезапное появление и исчезновение и чёткое отличие от фоновой активности, которую они превышают по амплитуде. Острые феномены с соответствующими параметрами, нечётко отличающиеся от фоновой активности, не обозначаются как острые волны или спайки.

Комбинации описанных феноменов обозначаются некоторыми дополнительными терминами.

Рис. 6-1 1 . Основные типы эпилептиформной активности: - спайки; 2 - острые волны; 3 - острые волны в Р-диапазоне; 4 - спайк-медленная волна; 5 - полиспайк-медленная волна; 6 - острая-медленная волна. Значение калибровочного сигнала для "4" - 100 мкВ, для остальных записей - 50 мкВ.

Вспышка - термин, обозначающий группу волн с внезапным возникновением и исчезновением, чётко отличающихся от фоновой активности частотой, формой и/или амплитудой (рис. 6-12).

Рис. 6-12. Вспышки и разряды: 1 - вспышки α -волн высокой амплитуды; 2 - вспышки β -волн высокой амплитуды; 3 - вспышки (разряды) острых волн; 4 - вспышки полифазных колебаний; 5 - вспышки δ -волн; 6 - вспышки θ -волн; 7 - вспышки (разряды) комплексов спайк-медленная волна.

Рис. 6- 13. Паперн типичного абсанса. Разряд генерализованных билатерально-синхронных комплексов спайк-медленная волна частотой 3 , 5 Гц.

Разряд - вспышка эпилептиформной активности.

Паттерн эпилептического припадка - разряд эпилептиформной активности, типично совпадающей с клиническим эпилептическим приступом.

Обнаружение таких феноменов, даже если не удаётся чётко оценить клинически состояние сознания пациента, также характеризуется как "паттерн эпилептического припадка" (рис. 6-13 и 6- 14) .

Рис. 6-1 4. ЭЭГ во время миоклонического приступа, спровоцированного мелькающим светом частотой 20 Гц, при юношеской миоклонической эпилепсии.

Эпилептический разряд начинается серией нарастающих по амплитуде генерализованных острых волн и переходит в генерализованные билатеральносинхронные и асинхронные серии нерегулярных комплексов спайк-медленная волна, полиспайк-медленная волна, множественных острых волн и спай ков амплитудой до 300 мкВ. Горизонтальная линия внизу - время световой стимуляции.

Гипсаритмия (греч. "высокоамплитудный ритм") - непрерывная генерализованная высокоамплитудная (> 150 мкВ) медленная гиперсинхронная активность с острыми волнами, спайками, комплексами спайк-медленная волна, полиспайк-медленная волна, синхронными и асинхронными. Важный диагностический признак синдромов Уэста и Леннокса-Гасто (рис. 6-15) .

Периодические комплексы - высокоамплитудные вспышки активности, характеризующиеся постоянством формы для данного пациента. Наиболее важные критерии их распознавания: близкий к постоянному интервал между комплексами; непрерывное присутствие в течение всей записи, при условии постоянства уровня функциональной активности мозга; интраиндивидуальная стабильность формы (стереотипность) . Чаще всего они представлены группой высокоамплитудных медленных волн, острых волн, сочетающихся с высокоамплитудными, заострёнными δ - или θ -колебаниями, иногда напоминают эпилептиформные комплексы острая-медленная волна (рис. 6-16) . Интервалы между комплексами составляют от 0,5-2 до десятков секунд. Генерализованные билатерально-синхронные периодические комплексы всегда сочетаются с глубокими нарушениями сознания и указывают на тяжёлое поражение мозга. Если они не обусловлены фармакологическими или токсическими факторами (алкогольная абстиненция, передозировка или внезапная отмена психотропных и гипноседативных препаратов, гепатопатия, отравление оксидом углерода) , то, как правило, являются следствием тяжёлой метаболической, гипоксической, прионовой или вирусной энцефалопатии.

Если интоксикации или метаболические нарушения исключены, то периодические комплексы с высокой достоверностью указывают на диагноз панэнцефалита или прионового заболевания.

Рис. 6- 1 5. ЭЭГ больного 3 лет с синдромом Уэста. Гипсаритмия: генерализованная медленная активность, острые волны, спайки и комплексы спайк-медленная волна амплитудой до 700 мкВ.

Рис. 6- 1 6. Подострый склерозирующий панэнцефалит Ван-Богарта. Периодические комплексы, комбинирующиеся с миоклоническими подёргиваниями, регистрируемыми на ЭМГ, и движениями глаз, регистрируемыми на электроокулограмме. В отведении F - регулярные артефакты движения глаз.

Варианты нормальной электроэнцефалограммы взрослого бодрствующего человека

ЭЭГ в существенной степени однородна для всего мозга и симметрична.

Функциональная и морфологическая неоднородность коры определяет особенности электрической активности различных областей мозга. Пространственная смена типов ЭЭГ отдельных областей мозга происходит постепенно. у большинства (85-90%) здоровых взрослых при закрытых глазах в покое на ЭЭГ регистрируется доминирующий α-ритм с максимальной амплитудой в затылочных отделах (см. рис. 6-2).

У 10-15% здоровых обследуемых амплитуда колебаний на ЭЭГ не превышает 25 мкВ, во всех отведениях регистрируется высокочастотная низкоамплитудная активность. Такие ЭЭГ называют низкоамплитудными. Низкоамплитудные ЭЭГ указывают на преобладание в мозге десинхронизирующих влияний и являются вариантом нормы (см. рис. 6-8).

У части здоровых обследуемых вместо α-ритма регистрируют активность 14- 18 Гц амплитудой около 50 мкВ в затылочных отделах, причём, подобно нормальному α-ритму, амплитуда снижается по направлению кпереди. Такая активность называется "быстрый α -вариант" .

Очень редко (0,2% случаев) на ЭЭГ при закрытых глазах в затылочных отделах регистрируются регулярные, близкие к синусоидальным, медленные волны частотой 2,5-6 Гц и амплитудой 50-80 мкВ. Этот ритм имеет все остальные топографические и физиологические характеристики α-ритма и называется "медленный альфа-вариант". Не будучи связан с какой-либо органической патологией, он рассматривается как пограничный между нормой и патологией и может указывать на дисфункцию диэнцефальных неспецифических систем мозга.

Изменения электроэнцефалограммы в цикле бодрствование-сон

Активное бодрствование (при умственной нагрузке, визуальном слежении, обучении и других ситуациях, требующих повышенной психической активности) характеризуется десинхронизацией нейрональной активности, на ЭЭГ преобладает низкоамплитудная высокочастотная активность.

Расслабленное бодрствование - состояние обследуемого, покоящегося в удобном кресле или на постели с расслабленной мускулатурой и закрытыми глазами, не занятого какой-либо специальной физической или психической активностью. У большинства здоровых взрослых в этом состоянии на ЭЭГ регистрируется регулярный α-ритм.

Первая стадия сна эквивалентна дремоте. На ЭЭГ наблюдают исчезновение α-ритма и появление одиночных и групповых низкоамплитудных θ - и δ -колебаний и низкоамплитудной высокочастотной активности. Внешние стимулы вызывают вспышки α-ритма. Продолжительность стадии 1-7 мин.

К концу этой стадии появляются медленные колебания амплитудой ≤ 75 мкВ.

В это же время могут появиться "вертексные острые переходные потенциалы " В виде одиночных или групповых монофазных поверхностно негативных острых волн с максимумом в области макушки, амплитудой обычно не более 200 мкВ; их считают нормальным физиологическим феноменом. Первая стадия характеризуется также медленными движениями глаз.

Вторая стадия сна характеризуется появлением сонных веретён и К-комплексов. Сонные веретёна - вспышки активности частотой 1 1 - 1 5 Гц, преобладающие в центральных отведениях. Продолжительность веретён - 0,5-3 с, амплитуда приблизительно 50 мкВ. Они связаны С срединными подкорковыми механизмами. К-комплекс - вспышка активности, типично состоящей из двухфазной высокоамплитудной волны с начальной негативной фазой, сопровождаемой иногда веретеном. Амплитуда его максимальна в области макушки, продолжительность не менее 0,5 с. К -комплексы возникают спонтанно или в ответ на сенсорные стимулы. В этой стадии эпизодически наблюдаются также вспышки полифазных высокоамплитудных медленных волн. Медленные движения глаз отсутствуют.

Третья стадия сна: веретёна постепенно исчезают и появляются θ - и δ-волны амплитудой более 75 мкВ в количестве от 20 до 50% времени эпохи анализа. В этой стадии часто трудно дифференцировать К-комплексы от δ-волн. Сонные веретёна могут полностью исчезнуть.

Четвёртая стадия сна характеризуется волнами частотой ≤ 2 Гц и более 75 мкВ, занимающих более 50% времени эпохи анализа.

Во время сна у человека эпизодически возникают периоды десинхронизации на ЭЭГ - так называемый сон с быстрыми движениями глаз. В течение этих периодов регистрируется полиморфная активность с преобладанием высоких частот. Этим периодам на ЭЭГ соответствует переживание сновидения, падение мышечного тонуса с появлением быстрых движений глазных яблок и иногда быстрых движений конечностей. Возникновение этой стадии сна связано с работой регуляторного механизма на уровне моста мозга, её нарушения свидетельствуют о дисфункции этих отделов мозга, что имеет важное диагностическое значение.

Возрастные изменения электроэнцефалограммы

ЭЭГ недоношенного ребёнка в возрасте до 24-27 нед гестации представлена вспышками медленной δ - и θ -активности, эпизодически комбинирующимися с острыми волнами, продолжительностью 2-20 с, на фоне низкоамплитудной (до 20-25 мкВ) активности.

У детей 28-32 нед гестации δ - и θ -активность амплитудой до 100-150 мкВ становится более регулярной, хотя также может включать вспышки более высокоамплитудной θ -активности, перемежающиеся периодами уплощения.

У детей старше 32 нед гестации на ЭЭГ начинаются прослеживаться функциональные состояния. В спокойном сне наблюдают интермиттирующую высокоамплитудную (до 200 мкВ и выше) δ-активность, сочетающуюся с θ-колебаниями и острыми волнами и перемежающуюся периодами относительно низкоамплитудной активности.

У доношенного новорождённого на ЭЭГ чётко определяются различия между бодрствованием с открытыми глазами (нерегулярная активность частотой 4-5 Гц и амплитудой 50 мкВ), активным сном (постоянная низкоамплитудная активность 4-7 Гц с наложением более быстрых низкоамплитудных колебаний) и спокойным сном, характеризующимся вспышками высокоамплитудной δ -активности в комбинации с веретёнами более быстрых высокоамплитудных волн, перемежающихся низкоамплитудными периодами.

У здоровых недоношенных детей и доношенных новорождённых в течение первого месяца жизни наблюдают альтернирующую активность во время спокойного сна. На ЭЭГ новорождённых присутствуют физиологические острые потенциалы, характеризующиеся мультифокальностью, спорадичностью появления, нерегулярностью следования. Амплитуда их обычно не превышает 1 00-110 мкВ, частота возникновения в среднем составляет 5 в час, основное их количество приурочено к спокойному сну. Нормальными также считают относительно регулярно возникающие острые потенциалы в лобных отведениях, не превышающие по амплитуде 150 мкВ. Нормальная ЭЭГ зрелого новорождённого характеризуется наличием ответа в виде уплощения ЭЭГ на внешние стимулы.

В течение первого месяца жизни зрелого ребёнка исчезает альтернирующая ЭЭГ спокойного сна, на втором месяце появляются веретёна сна, организованная доминирующая активность в затылочных отведениях, достигающая частоты 4-7 гц в возрасте 3 мес.

В течение 4-6-го месяцев жизни количество θ-волн на ЭЭГ постепенно увеличивается, а δ -волн - уменьшается, так что к концу 6-го месяца на ЭЭГ доминирует ритм частотой 5-7 Гц. С 7-го по 12-й месяц жизни формируется α-ритм с постепенным уменьшением количества δ - и θ-волн. к 12 мес доминируют колебания, которые можно охарактеризовать как медленный α-ритм (7-8,5 Гц). С 1 года до 7-8 лет продолжается процесс постепенного вытеснения медленных ритмов более быстрыми колебаниями (α - и β -диапазона) (табл. 6-1). После 8 лет на ЭЭГ доминирует α-ритм. Окончательное формирование ЭЭГ происходит к 16-18 годам.

Таблица 6- 1 . Граничные значения частоты доминирующего ритма у детей

На ЭЭГ здоровых детей могут присутствовать избытчныыe диффузные медленные волны, вспышки ритмичных медленных колебаний, разряды эпилептиформной активности, так что с точки зрения традиционной оценки возрастной нормы даже у заведомо здоровых лиц в возрасте до 21 года к "нормальным" могут быть отнесены только 70-80% ЭЭГ. Частота некоторых вариантов активности в детском и юношеском возрасте приведена в табл. 6-2.

С 3-4 и до 1 2 лет нарастает (с 3 до 16%) доля ЭЭГ с избыточными медленными волнами, а затем этот показатель достаточно быстро снижается.

Реакция на гипервентиляцию в форме появления высокоамплитудных медленных волн в возрасте 9-11 лет более выражена, чем в младшей группе. Не исключено, однако, что это связано с менее чётким выполнением пробы детьми младшего возраста.

Таблица 6-2. Представленность некоторых вариантов ЭЭГ в здоровой популяции в зависимости от возраста

Уже упомянутая относительная стабильность характеристик ЭЭГ взрослого человека сохраняется приблизительно до 50 лет. С этого периода наблюдается перестройка спектра ЭЭГ, выражающаяся в уменьшении амплитуды и относительного количества α-ритма и нарастании количества β - и θ-волн. Доминирующая частота после 60-70 лет имеет тенденцию к снижению. В этом возрасте у практически здоровых лиц также появляются видимые при визуальном анализе θ - и δ -волны.

Компьютерные методы анализа электроэнцефалограммы

Основные методы компьютерного анализа ЭЭГ, применяемые в клинике, включают спектральный анализ по алгоритму быстрого преобразования Фурье, картирование мгновенной амплитуды, спайков и определение трёхмерной локализации эквивалентного диполя в пространстве мозга.

Наиболее часто используют спектральный анализ. Этот метод позволяет определить абсолютную мощность, выражаемую в мкВ2 для каждой частоты. Диаграмма спектра мощности за заданную эпоху представляет двухмерное изображение, на котором по оси абсцисс отложены частоты ЭЭГ, а по оси ординат - мощности на соответствующих частотах. Представленные в виде следующих один за другим спектров данные спектральной мощности ЭЭГ дают псевдотрёхмерный график, где направление по воображаемой оси вглубь рисунка представляет временную динамику изменений в ЭЭГ. Такие изображения удобны в отслеживании изменений ЭЭГ при нарушениях сознания или воздействии во времени каких-либо факторов (рис. 6-17).

Кодируя цветом распределение мощностей или средних амплитуд по основным диапазонам на условном изображении головы или мозга, получают наглядное изображение их топической представленности (рис. 6-18). Следует подчеркнуть, что метод картирования не даёт новой информации, а только представляет её в другом, более наглядном виде.

Определение трёхмерной локализации эквивалентного диполя заключается в том, что с помощью математического моделирования изображается расположение виртуального источника потенциала, который предположительно мог бы создать распределение электрических полей на поверхности мозга, соответствующее наблюдаемому, если предположить, что они генерируются не нейронами коры по всему мозгу, а являются результатом пассивного распространения электрического поля от единичных источников. В некоторых частных случаях эти вычисляемые "эквивалентные источники" совпадают с реальными, что позволяет при соблюдении определённых физических и клинических условий использовать этот метод для уточнения локализации эпилептогенных фокусов при эпилепсии (рис. 6-19) .

Следует иметь в виду, что компьютерные карты ЭЭГ отображают распределения электрических полей на абстрагированных моделях головы и поэтому не могут восприниматься как непосредственные изображения, подобные МРТ. Необходима их интеллектуальная интерпретация специалистом по ЭЭГ в контексте клинической картины и данных анализа "сырой" ЭЭГ. Поэтому прилагаемые иногда к заключению по ЭЭГ компьютерные топографические карты являются для невролога вполне бесполезными, а иногда и опасными при его собственных попытках их прямого истолкования. Согласно рекомендациям Международной федерации обществ ЭЭГ и клинической нейрофизиологии, вся необходимая диагностическая информация, полученная главным образом на основе прямого анализа "сырой" ЭЭГ, должна быть изложена специалистом по ЭЭГ на понятно м для клинициста языке в текстовом заключении. Недопустимо предоставление в качестве клиникоэлектроэнцефалографического заключения текстов, которые формулируются автоматически компьютерными программами некоторых электроэнцефалографов. Для получения не только иллюстративного материала, но и дополнительной специфической диагностической или про гностической информации необходимо использование более сложных алгоритмов исследования и компьютерной обработки ЭЭГ, статистических методов оценки данных с набором соответствующих групп контроля, разрабатываемых для решения узко специализированных задач, изложение которых выходит за рамки стандартного использования ЭЭГ в неврологической клинике ., 2001; 3енков Л.Р., 2004].

Рис. 6 - 1 7 . Псевдотрёхмерный график спектра мощности ЭЭГ в диапазоне 0-32 Гц здорового подростка 14 лет. По оси абсцисс - частота (Гц), ординат - мощность в мкВ 2 ; воображаемая ось от зрителя в глубину графика - время. Каждая кривая отражает спектр мощности за 30 с. Начало исследования - вторая кривая снизу, конец - верхняя кривая; 5 нижних кривых - глаза открыты, причём первые 2 кривые (1 -я минута записи) - счёт элементов орнамента перед глазами испытуемого.

Видно, что по прекращении счёта появилась небольшая синхронизация на частотах 5,5 и 1 0,5 Гц. Резкое возрастание мощности на частоте 9 Гц (α-ритм) при закрывании глаз (кривые 6- 1 1 снизу). Кривые 1 2-20 снизу - 3 мин гипервентиляции. Видно нарастание мощности в диапазоне 0,5-6 Гц и расширение пика а за счёт частоты 8,5 Гц. Кривые 2 1 -25 - глаза закрыты, далее глаза открыты; последняя минута записи - счёт элементов орнамента. Видно исчезновение низкочастотных составляющих по окончании гипервентиляции и исчезновение пика а при открывании глаз.

По эстетическим соображениям из-за "зашкаливания" пика чувствительность резко снижена, что делает кривые спектров при открывании глаз и счёте близкими к нулю.

Рис. 6-18. ЭЭГ больной Н., 8 лет, с приобретённым эпилептическим лобно-долевым синдромом. ЭЭГ представлена при скорости развёртки 60 мм/с с целью оптимального выявления формы высокочастотных потенциалов. На фоне регулярного α-ритма 8 Гц в фронтополярных отведениях прослеживаются стереотипные периодические билатеральные эпилептиформные разряды (ПБЛЭР) в виде веретён из 4-5 спайков с последующей медленной волной амплитудой 350-400 мкВ, следующие непрерывно с регулярной частотой 0,55 Гц. Справа: картирование этой активности демонстрирует билатеральное распространение по полюсам лобных долей.

Рис. 6-19. ЭЭГ пациента с симптоматической лобной эпилепсией. Генерализованные разряды билатерально-синхронных комплексов острая-медленная волна частотой 2 Гц и амплитудой до 350 мкВ с чётким амплитудным преобладанием в правой лобной области. Трёхмерная локализация начальных спайков эпилеnтиформных разрядов демонстрирует плотную серию из двух подмножеств мобильных источников, начинающихся в полюсе орбитофронтальной коры справа и распространяющихся кзади вдоль контура кисты в направлении ростральных отделов переднего продольного пучка переднего мозга. В правом нижнем углу: КТ визуализирует кисту в орбитофронтальной области правого полушария.

ИЗМЕНЕНИЯ ЭЛЕКТРОЭНЦЕФАЛОГРАММЫ ПРИ НЕВРОЛОГИЧЕСКОЙ ПАТОЛОГИИ

Неврологические заболевания можно условно разделить на две группы. Первые связаны по преимуществу со структурными мозговыми нарушениями. К ним относятся сосудистые, воспалительные, аутоиммунные, дегенеративные, травматические поражения. В их диагностике решающая роль принадлежит нейровизуализации, и значение ЭЭГ здесь мало.

Ко второй группе относятся заболевания, при которых симптоматика обусловлена в основном нейродинамическими факторами. В отношении этих расстройств ЭЭГ обладает разной степенью чувствительности, от чего зависит целесообразность её применения. Наиболее распространённой из этой группы расстройств (и самым распространённым заболеванием мозга) является эпилепсия, представляющая собой в настоящее время главное поле клинического применения ЭЭГ.

Общие закономерности

Задачи ЭЭГ в неврологической практике следующие: (1) констатация поражения мозга, (2) определение характера и локализации патологических изменений, (3) оценка динамики состояния. Явная патологическая активность на ЭЭГ является достоверным свидетельством патологического функционирования мозга. Патологические колебания связаны с текущим патологическим процессом. При резидуальных расстройствах изменения в ЭЭГ могут отсутствовать, несмотря на значительный клинический дефицит. Одним из основных аспектов диагностического использования ЭЭГ является определение локализации патологического процесса.

Диффузное поражение мозга, вызываемое воспалительным заболеванием, дисциркуляторными, метаболическими, токсическими нарушениями, приводит соответственно к диффузным изменениям ЭЭГ. Они проявляются полиритмией, дезорганизацией и диффузной патологической активностью.

Полиритмия - отсутствие регулярного доминирующего ритма и преобладание полиморфной активности. Дезорганизация ЭЭГ - исчезновение характерного градиента амплитуд нормальных ритмов, нарушение симметричности

Диффузная патологическая активность представлена θ -, δ -, эпилептиформной активностью. Картина полиритмии обусловлена случайной комбинацией разных видов нормальной и патологической активности. Основным признаком диффузных изменений, в отличие от фокальных, является отсутствие постоянной локальности и стабильной асимметрии активности в ЭЭГ (Рис. 6-20) .

Поражение или дисфункция срединных структур большого мозга, вовлекающие неспецифические восходящие проекции, проявляются билатеральносинхронными вспышками медленных волн или эпилептиформной активности, при этом вероятность появления и выраженность медленной патологической билатерально-синхронной активности тем больше, чем выше по невральной оси располагается поражение. Так, даже при грубом поражении бульбопонтинных структур ЭЭГ в большинстве случаев остаётся в пределах нормы.

В части случаев из-за поражения на этом уровне неспецифической синхронизующей ретикулярной формации возникает десинхронизация и, соответственно, низкоамплитудная ЭЭГ. Поскольку такие ЭЭГ наблюдаются у 5-15% здоровых взрослых, их следует рассматривать как условно патологические.

Только у небольшого количества больных с поражениями на нижнестволовом уровне наблюдают вспышки билатерально-синхронных высокоамплитудных (Х- или медленных волн. При поражении на мезенцефальном и диэнцефальном уровне, а также более высоко лежащих срединных структур большого мозга: поясной извилины, мозолистого тела, орбитальной коры - на ЭЭГ наблюдают билатерально-синхронные высокоамплитудные θ - и δ -волны (рис. 6-21).

Рис. 6-20. ЭЭГ больного 43 лет с последствиями менингоэнцефалита. Диффузные изменения на ЭЭГ: диффузные θ -, δ -волны и острые колебания.

При латерализованных поражениях в глубине полушария за счёт широкой проекции глубинных структур на обширные области мозга наблюдается соответственно широко распространённая по полушарию патологическая θ - и δ -активность. Из-за непосредственного влияния медиального патологического процесса на срединные структуры и вовлечение симметричных структур здорового полушария появляются и билатерально-синхронные медленные колебания, преобладающие по амплитуде на стороне поражения (рис. 6-22).

Рис. 6-21 . ЭЭГ больного 38 лет с менингиомой серповидного отростка в прецентральных, заднелобных отделах. Билатерально-синхронные вспышки о-волн, преобладающие в центральнолобных отведениях, на фоне нормальной электрической активности.

Рис. 6-22. ЭЭГ при глиоме медиобазальных отделов левой лобной доли. Билатерально-синхронные регулярные высокоамплитудные вспышки δ -волн 1 ,5-2 Гц, преобладающие по амплитуде слева и в передних отделах.

Поверхностное расположение поражения вызывает локальное изменение электрической активности, ограниченное зоной нейронов, непосредственно прилегающих к фокусу деструкции. Изменения проявляются медленной активностью, выраженность которой зависит от тяжести поражения.

Эпилептическое возбуждение проявляется локальной эпилептиформной активностью (рис. 6-23).

Рис. 6-23. ЭЭГ больного с конвекситальной, прорастающей кору астроцитомой правой лобной доли. Чётко ограниченный очаг δ -волн в правой лобной области (отведения F и FТp).

Нарушения электроэнцефалограммы при неэпилептических заболеваниях

Опухоли полушарий мозга вызывают появление на ЭЭГ медленных волн. При вовлечении срединных структур к локальным изменениям могут присоединяться билатерально-синхронные нарушения (см. рис. 6-22). Характерно прогрессирующее увеличение выраженности изменений с ростом опухоли. Экстрацеребральные доброкачественные опухоли вызывают менее грубые нарушения. Астроцитомы нередко сопровождаются эпилептическими припадками, и в таких случаях наблюдают эпилептиформную активность соответствующей локализации. При эпилепсии регулярное сочетание эпилептиформной активности с постоянными и нарастающими при повторных исследованиях δ -волнами в области фокуса свидетельствует в пользу неопластической этиологии.

Цереброваскулярные заболевания : выраженность нарушений ЭЭГ зависит от тяжести повреждения мозга. Когда поражение церебральных сосудов не приводит к тяжёлой, клинически проявляющейся ишемии мозга, изменения на ЭЭГ могут отсутствовать или носят пограничный с нормой характер. При дисциркуляторных расстройствах в вертебробазилярном русле может наблюдаться десинхронизация и уплощение ЭЭГ.

При ишемических инсультах в острой стадии изменения проявляются θ - и δ -волнами. При каротидном стенозе патологические ЭЭГ встречаются менее чем у 50% больных, при тромбозе сонной артерии - у 70%, а при тромбозе средней мозговой артерии - у 95% больных. Стойкость и выраженность патологических изменений на ЭЭГ зависят от возможностей коллатерального кровообращения и тяжести поражения мозга. После острого периода на ЭЭГ наблюдается уменьшение выраженности патологических изменений. В ряде случаев в отдалённом периоде перенесённого инсульта ЭЭГ нормализуется даже при сохранении клинического дефицита. При геморрагических инсультах изменения на ЭЭГ значительно более грубые, стойкие и распространённые, что соответствует и более тяжёлой клинической картине.

Черепно-мозговая травма : изменения на ЭЭГ зависят от тяжести и наличия локальных и общих изменений. При сотрясении мозга в период утраты сознания наблюдают генерализованные медленные волны. В ближайшем периоде могут появляться негрубые диффузные θ-волны амплитудой до 50-60 мкВ. При ушибе мозга, его размозжении в области поражения наблюдаются δ -волны высокой амплитуды. При обширном конвексиальном поражении можно обнаружить зону отсутствия электрической активности. При субдуральной гематоме на её стороне наблюдают медленные волны, которые могут иметь относительно низкую амплитуду.

Иногда развитие гематомы сопровождается снижением амплитуды нормальных ритмов в соответствующей области из-за "экранирующего" действия крови.

В благоприятных случаях в отдалённом периоде после травмы ЭЭГ нормализуется.

Прогностическим критерием развития посттравматической эпилепсии является появление эпилептиформной активности. В части случаев в отдалённом периоде после травмы развивается диффузное уплощение ЭЭГ. свидетельствующее о неполноценности активирующих неспецифических систем мозга.

Воспалительные, аутоиммунные, прионовые заболевания мозга . При менингитах в острой фазе наблюдают грубые изменения в виде диффузных высокоамплитудных δ - и θ-волн, фокусов эпилептиформной активности с периодическими вспышками билатерально-синхронных патологических колебаний, свидетельствующих о вовлечении в процесс срединных отделов мозга. Стойкие локальные патологические фокусы могут свидетельствовать о менингоэнцефалите или абсцессе мозга.

При панэнцефалитах характерны периодические комплексы в виде стереотипных генерализованных высокоамплитудных (до 1000 мкВ) разрядов θ - и δ -волн, обычно комбинирующихся с короткими веретёнами колебаний в α - или β -ритме, а также с острыми волнами или спайками. Они возникают по мере прогрессирования заболевания с появления одиночных комплексов, которые вскоре приобретают периодический характер, увеличиваясь по длительности и амплитуде. Частота их появления постепенно возрастает, пока они не сливаются в непрерывную активность (см. рис. 6-16).

Рис. 6-24. Периодические комплексы острая-медленная волна и полифазные волны при болезни Крейтцфельда-Якоба.

При герпесном энцефалите комплексы наблюдают в 60-65% случаев, преимущественно при тяжёлых формах заболевания с неблагоприятным прогнозом.

Приблизительно в двух третях случаев периодические комплексы фокальны, чего не бывает при панэнцефалите Ван-Богарта.

При болезни Крейтцфельда-Якоба обычно через 12 мес от начала болезни появляется непрерывная регулярная ритмическая последовательность комплексов типа острая-медленная волна, следующих с частотой 1,5-2 Гц (рис. 6-24).

Дегенеративные и дезонтогенетические заболевания: данные ЭЭГ в сочетании с клинической картиной могут помочь в дифференциальной диагностике, в наблюдении за динамикой процесса и в выявлении локализации наиболее грубых изменений. Частота изменений ЭЭГ у больных паркинсонизмом варьирует, по разным данным, от 3 до 40%. Наиболее часто наблюдают замедление основного ритма, особенно типичное для акинетических форм.

Для болезни Альцгеймера типичны медленные волны в лобных отведениях, определяемые как "передняя брадиритмия" . Она характеризуется частотой 1-2,5 Гц, амплитудой менее 150 мкВ, полиритмичностью, распространением в основном в лобных и передневисочных отведениях. Важной особенностью "передней брадиритмии " является её постоянство. У 50% больных с болезнью Альцгеймера и у 40% с мультиинфарктной деменцией ЭЭГ в границах возрастной нормы ., 2001; Зенков Л.Р., 2004] .

Электроэнцефалография при эпилепсии

Методические особенности электроэнцефалографии в эпилептологии

Эпилепсия - заболевание, проявляющееся двумя и более эпилептическими приступами (припадками). Эпилептический приступ - короткое, обычно не спровоцированное стереотипное нарушение сознания, поведения, эмоций, моторных или сенсорных функций, которое даже по клиническим проявлениям можно связать с разрядом избыточного количества нейронов в коре мозга. Определение эпилептического припадка через понятие разряда нейронов определяет важнейшее значение ЭЭГ в эпилептологии.

Уточнение формы эпилепсии (более 50 вариантов) включает обязательным компонентом описание характерной для данной формы картины ЭЭГ. Ценность ЭЭГ определяется тем, что эпилептические разряды, а следовательно, и эпилептиформную активность, на ЭЭГ наблюдают и вне эпилептического приступа.

Надёжными признаками эпилепсии являются разряды эпилептиформной активности и паттерны эпилептического припадка. Кроме того, характерны высокоамплитудные (более 100-150 мкВ) вспышки α -, θ -, и δ-активности, однако сами по себе они не могут считаться доказательством наличия эпилепсии и оцениваются в контексте клинической картины. Помимо диагноза эпилепсии, ЭЭГ играет важную роль в определении формы эпилептического заболевания, от чего зависит прогноз и выбор препарата. ЭЭГ позволяет подобрать дозу препарата по оценке уменьшения эпилептиформной активности и предсказать побочные эффекты по появлению дополнительной патологической активности.

Для выявления эпилептиформной активности на ЭЭГ используют световую ритмическую стимуляцию (в основном при фото генных припадках), гипервентиляцию или другие воздействия, исходя из сведений о провоцирующих приступы факторах. Долгосрочная регистрация, особенно во время сна, способствует выявлению эпилептиформных разрядов и паттернов эпилептического припадка.

Провокации эпилептиформных разрядов на ЭЭГ или самого припадка способствует депривация сна. Эпилептиформная активность подтверждает диагноз эпилепсии, однако возможна и при других состояниях, в то же время у части больных эпилепсией зарегистрировать её не удаётся.

Долгосрочная регистрация электроэнцефалограммы и ЭЭГ-видеомониторинг

Как и эпилептические припадки, эпилептиформная активность на ЭЭГ регистрируется не постоянно. При некоторых формах эпилептических расстройств она наблюдается только во время сна, иногда провоцируется определёнными жизненными ситуациями или формами активности пациента. Следовательно, надёжность диагностики эпилепсии прямо зависит от возможности длительной регистрации ЭЭГ в условиях достаточно свободного поведения обследуемого. Для этой цели разработаны специальные портативные системы долгосрочной (12-24 ч и более) записи ЭЭГ в условиях, приближенных к обычной жизнедеятельности.

Регистрирующая система состоит из эластичной шапочки с вмонтированными в неё электродами специальной конструкции, позволяющими долговременно получать качественное отведение ЭЭГ. Отводимая электрическая активность мозга усиливается, оцифровывается и регистрируется на флеш-картах рекордером размером с портсигар, помещающимся в удобной сумке на пациенте. Пациент может выполнять обычные домашние действия. По завершении записи информация с флеш-карты в лаборатории переводится в компьютерную систему регистрации, просмотра, анализа, хранения и распечатки электроэнцефалографических данных и обрабатывается как обычная ЭЭГ. Наиболее надёжную информацию даёт ЭЭГ -видеомониторинг - одновременная регистрация ЭЭГ и видеозаписи пациента во время при ступа. Использование этих методов требуется при диагностике эпилепсии, когда рутинная ЭЭГ не выявляет эпилептиформной активности, а также при определении формы эпилепсии и типа эпилептического припадка, для дифференциальной диагностики эпилептических и неэпилептических приступов, уточнения целей операции при хирургическом лечении, диагноза эпилептических непароксизмальных расстройств, связанных с эпилептиформной активностью во сне, контроля правильности выбора и дозы препарата, побочных эффектов терапии, надёжности ремиссии.

Характеристики электроэнцефалограммы при наиболее распространённых формах эпилепсии и эпилептических синдромов

Доброкачественная эпилепсия детского возраста с центро-темпоральными спайками (доброкачественная роландическая эпилепсия).

Рис. 6-25. ЭЭГ пациента Ш.Д. 6 лет с идиопатической детской эпилепсией с центро-темпоральными спайками. Видны регулярные комплексы острая-медленная волна амплитудой до 240 мкВ в правой центральной (С 4) и передневисочной области (Т 4), формирующие извращение фазы в соответствующих отведениях, свидетельствующее о генерации их диполем в нижних отделах прецентральной извилины на границе с верхней височной.

Вне приступа: фокальные спайки, острые волны и/или комплексы спайк-медленная волна в одном полушарии (40-50%) или в двух с односторонним преобладанием в центральных и средневисочных отведениях, формирующие противофазы над роландической и височной областью (рис. 6-25).

Иногда эпилептиформная активность во время бодрствования отсутствует, но появляется во время сна.

Во время приступа: фокальный эпилептический разряд в центральных и средневисочных отведениях в виде высокоамплитудных спай ков и острых волн, комбинирующихся С медленными волнами, с возможным распространением за пределы начальной локализации.

Доброкачественная затылочная эпилепсия детского возраста с ранним началом (форма Панайотопулоса) .

Вне приступа: у 90% пациентов наблюдают в основном мультифокальные высоко- или низкоамплитудные комплексы острая-медленная волна, нередко билатерально-синхронные генерализованные разряды. В двух третях случаев наблюдают затылочные спайки, в трети случаев - экстраокципитальные.

Комплексы возникают сериями при закрывании глаз.

Отмечают блокирование эпилептиформной активности открыванием глаз. Эпилептиформная активность на ЭЭГ и иногда приступы провоцируются фото стимуляцией.

Во время приступа: эпилептический разряд в виде высокоамплитудных спайков и острых волн, комбинирующихся С медленными волнами, в одном или обоих затылочных и заднетеменных отведениях, обычно с распространением за пределы начальной локализации.

Идиапатические генерализованные эпилепсии. Паттерны ЭЭГ, характерные для детской и юношеской идиопатических эпилепсий с абсансами, а также для идиопатической юношеской миоклонической эпилепсии, приведены выше (см. рис. 6-13 и 6-14)

Характеристики ЭЭГ при первично генерализованной идиопатической эпилепсии с генерализованными тонико-клоническими приступами следующие.

Вне приступа: иногда в пределах нормы, но обычно с умеренными или выраженными изменениями с θ -, δ -волнами, вспышками билатеральносинхронных или асимметричных комплексов спайк-медленная волна, спайков, острых волн.

Во время приступа: генерализованный разряд в виде ритмической активности 10 Гц, постепенно нарастающей по амплитуде и уменьшающейся по частоте в клонической фазе, острые волны 8-16 Гц, комплексы спайк-медленная волна и полиспайк-медленная волна, группы высокоамплитудных θ - и δ -волн, нерегулярных, асимметричных, в тонической фазе θ - и δ -активность, завершающаяся иногда периодами отсутствия активности или низкоамплитудной медленной активности.

Симптоматические фокальные эпилепсии: характерные эпилептиформные фокальные разряды наблюдают менее регулярно, чем при идиопатических. Даже припадки могут проявляться не типичной эпилептиформной активностью, а вспышками медленных волн или даже де синхронизацией и связанным с припадком уплощением ЭЭГ.

При лимбических (гиппокампальных) височных эпилепсиях в межприступный период изменения могут отсутствовать. Обычно наблюдают фокальные комплексы острая-медленная волна в височных отведениях, иногда билатерально-синхронные с односторонним амплитудным преобладанием (рис. 6-26). Во время приступа - вспышки высокоамплитудных ритмичных "крутых" медленных волн, или острых волн, или комплексов острая-медленная волна в височных отведениях с распространением на лобные и задние. В начале (иногда во время) припадка может наблюдаться одностороннее уплощение ЭЭГ. При латерально-височных эпилепсиях со слуховыми и реже зрительными иллюзиями, галлюцинациями и сноподобными состояниями, нарушениями речи и ориентации эпилептиформная активность на ЭЭГ наблюдается чаще. Разряды локализуются в средне- и задневисочных отведениях.

При бессудорожных височных приступах, протекающих по типу автоматизмов, возможна картина эпилептического разряда в виде ритмичной первично- или вторично-генерализованной высокоамплитудной θ -активности без острых феноменов, и в редких случаях - в виде диффузной десинхронизации, проявляющейся полиморфной активностью амплитудой меньше 25 мкВ.

Рис. 6-26. Височно-долевая эпилепсия у больного 28 лет с комплексными парциальными приступами. Билатерально-синхронные комплексы острая-медленная волна в передних отделах височной области с амплитудным преобладанием справа (электроды F 8 и Т 4), свидетельствуют о локализации источника патологической активности в передних медиобазальных отделах правой височной доли. На МРТ справа в медиальных отделах височной области (область гиппокампа) - округлое образование (астроцитома, по данным послеоперационного гистологического исследования).

ЭЭГ при лобнодолевых эпилепсиях в межприпадочном периоде в двух третях случаев фокальной патологии не выявляет. При наличии эпилептиформных колебаний они регистрируются в лобных отведениях с одной или с двух сторон, наблюдаются билатерально-синхронные комплексы спайк-медленная волна, часто с латеральным преобладанием в лобных отделах. Во время припадка могут наблюдаться билатерально-синхронные разряды спайк-медленная волна или высокоамплитудные регулярные θ - или δ -волны, преимущественно в лобных и/или височных отведениях, иногда внезапная диффузная десинхронизация. При орбитофронтальных фокусах трёхмерная локализация выявляет соответственное расположение источников начальных острых волн паттерна эпилептического припадка (см. рис. 6-19) .

Эпилептические энцефалопатии. В предложения Комиссии по терминологии и классификации Международной противоэпилептической лиги введена новая диагностическая рубрика, включающая широкий круг тяжёлых эпилептических расстройств, - эпилептические энцефалопатии. Это перманентные нарушения функций мозга, обусловленные эпилептическими разрядами, проявляющимися на ЭЭГ как эпилептиформная активность, а клинически - разнообразными продолжительными психическими, поведенческими, нейропсихалогическими и неврологическими расстройствами. К ним относят синдром инфантильных спазмов Уэста, синдром Леннокса-Гасто, другие тяжёлые "катастрофические" младенческие синдромы, а также широкий круг психических и поведенческих расстройств, часто протекающих без эпилептических припадков [Епgеl ]., 2001; Мухин К.Ю. и соавт., 2004; Зенков Л.Р., 2007] . Диагностика эпилептических энцефалопатий возможна только с помощью ЭЭГ, поскольку при отсутствии припадков только она может установить эпилептическую природу заболевания, а при наличии припадков уточнить принадлежность заболевания именно к эпилептической энцефалопатии. Ниже приведены данные об изменениях ЭЭГ при основных формах эпилептических энцефалопатий.

Синдром инфантильных спазмов Уэста.

Вне приступа: гипсаритмия, то есть непрерывная генерализованная высокоамплитудная медленная активность и острые волны, спайки, комплексы спайк-медленная волна. Могут быть локальные патологические изменения или стойкая асимметрия активности (см. рис. 6-15).

Во время приступа: молниеносной начальной фазе спазма соответствуют генерализованные спайки и острые волны, тоническим судорогам - генерализованные спайки, нарастающие по амплитуде к концу припадка (β -активность). Иногда припадок проявляется внезапно возникающей и прекращающейся десинхронизацией (снижением амплитуды) текущей эпилептиформной высокоамплитудной активности.

Синдром Леннокса-Гасто.

Вне приступа: непрерывная генерализованная высокоамплитудная медленная и гиперсинхронная активность с острыми волнами, комплексами спайк-медленная волна (200-600 мкВ) , фокальные и мультифокальные нарушения, соответствующие картине гипсаритмии.

Во время приступа: генерализованные спайки и острые волны, комплексы спайк-медленная волна. При миоклонико-астатических припадках - комплексы спайк-медленная волна. Иногда отмечают десинхронизацию на фоне высокоамплитудной активности. Во время тонических припадков - генерализованная высокоамплитудная (≥ 50 мкВ) острая β -активность.

Ранняя младенческая эпилептическая энцефалопатия с паттерном "вспышка-подавление" на ЭЭГ (синдром Отахара) .

Вне приступа: генерализованная активность "вспышка-подавление" - 3-10-секундные периоды высокоамплитудной θ -, δ -активности с нерегулярными асимметричными комплексами полиспайк-медленная волна, острая-медленная волна 1-3 Гц, прерываемая периодами низкоамплитудной " 40 мкВ) полиморфной активности, или гипсаритмия - генерализованная δ - и θ -активность со спайками, острыми волнами, комплексами спайк-медленная волна, полиспайк-медленная волна, острая-медленная волна амплитудой более 200 мкВ.

Во время приступа: увеличение амплитуды и количества спайков, острых волн, комплексов спайк-медленная волна, полиспайк-медленная волна, острая-медленная волна амплитудой более 300 мкВ или уплощение фоновой записи.

Эпилептические энцефалопатии, проявляющиеся преимущественно поведенческими, психическими и когнитивными нарушениями. К этим формам относятся эпилептическая афазия Ландау-Клеффнера, эпилепсия с постоянными комплексами спайк-медленная волна в медленноволновом сне, лобно-долевой эпилептический синдром (см. рис. 6-18) , приобретённый эпилептический синдром нарушения развития правого полушария и другие.

Основная их особенность и один из главных критериев диагноза - грубая эпилептиформная активность, соответствующая по типу и локализации характеру нарушенной функции мозга. При общих нарушениях развития типа аутизма могут наблюдаться билатерально-синхронные разряды, характерные для абсансов, при афазии - разряды в височных отведениях и Т.д. [Мухин к.ю. И др., 2004; Зенков Л.Р., 2007].

Цель:

· Умение регистрации электроэнцефалограммы и принципы анализа.

· Изучении внешнего электрического поля мозга при помощи ЭЭГ.

· Значение для генеза ЭЭГ взаимосвязи электрической активности пирамидных нейронов.

Основные вопросы темы:

1.Какие методы используется для регистраций ЭЭГ?

2.Основные типы электрической активности пирамидных нейронов.

3.Какие современные модели используется в ЭЭГ?

4.Какое значение имеет взаимосвязь электрической активности пирамидных нейронов.

5.Какое важное условие генеза ЭЭГ?

Методы обучения и преподования: Работа группах

Краткое содержание по теме

Исследование рабочих свойств центральной нервной системы производится при помощи специальных нейрофизиологических методов. Одним из основных является электроэнцефалография , позволяющая регистрировать суммарную активность нейронов коры головного мозга, представляющую собой колебательный процесс в частотном диапазоне в основном от 1 до 30-40 колебаний в секунду и регулирующуюся глубинными мозговыми структурами. Таким образом, по картине активности коры головного мозга возможно оценить и ее самое, и степень подкорковых влияний на процесс ее формирования.

Электроэнцефалография (ЭЭГ) (электро- + др.-греч. ενκεφαλος - "головной мозг" + γραφω - "пишу", изображать) - раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи головы, а также метод записи таких потенциалов. Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т. д. Регистрация ЭЭГ осуществляется с помощью новейшего 32-канального электроэнцефалографа «Нейрон-Спектр-5» (рис-1). Многоканальная запись ЭЭГ позволяет одновременно регистрировать электрическую активность всей поверхности мозга, что дает возможность проводить самые тонкие исследования.

Достоинствами метода электроэнцефалографии являются объективность, воз-можность непосредственной регистрации показателей функционального состояния мозга, количественной оценки получаемых результатов, наблюдения в динамике. Большое преимущество этого метода состоит в том, что он не связан с вмешатель-ством в организм обследуемого.

Метод ЭЭГ является наиболее адекватным для изучения нейрофизиологиче-ских основ психической деятельности, оценки зрелости центральной нервной системы и общего функционального состояния мозга. Когерентный анализ ЭЭГ позволяет оценить степень согласованности электрической активности в разных точках головного мозга, что даёт возможность исследования особенностей функционирования мозга как единого целого.

ЭЭГ является клиническим методом исследования, позволяющим диагности-ровать эпилепсию, выявить возможные дегенеративные, опухолевые поражения головного мозга, установить их локализацию (рис.2).

Начало изучению электрических процессов мозга было положено Д. Реймоном в 1849 году, который показал, что мозг, также как нерв и мышца, обладает электрогенными свойствами. Начало электроэнцефалографическим исследованиям положил В. В. Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Так же Правдич-Неминский вводит термин электроцереброграмма.

Рис. 1.

Первая запись ЭЭГ человека получена австрийским психиатром Гансом Бергером в 1928 году. Он же предложил запись биотоков мозга называть «электроэнцефалограмма». Работы Бергера, а также сам метод энцефалографии получили широкое признание лишь после того как в мае 1934 года Эдриан и Мэттьюс впервые убедительно продемонстрировали «ритм Бергера» на собрании Физиологического общества в Кембридже.

Регистрация ЭЭГ производится специальными электродами (наиболее распространенные мостиковые, чашечковые и игольчатые). В настоящее время чаще всего используется расположение электродов по международным системам «10-20 %» или «10-10 %». Каждый электрод подключен к усилителю. Для записи ЭЭГ может использоваться или бумажная лента или сигнал может преобразовываться с помощью АЦП и записываться в файл на компьютере. Наиболее распространена запись с частотой дискретизации 250 Гц. Запись потенциалов с каждого электрода осуществляется относительно нулевого потенциала референта, за который принимается мочка уха, или кончик носа. В настоящее время получают все большее распространение перерасчет потенциала относительно взвешенного среднего референта, за который принимается все каналы с определенными весовыми коэффициентами. При таком расчете возможные артефакты локализуются, а влияние соседних отведений друг на друга уменьшается.

Рис. 2.

Показания для ЭЭГ:

  • черепно-мозговые травмы - для оценки функционального состояния мозга и судорожной готовности;
  • проведение ЭЭГ в динамике для оценки эффективности противосудорожной терапии;
  • синдром вегетативной дисфункции с паническими вегетативными пароксизмами;
  • дифференциальная диагностика тсинкопальных состояний с целью исключения эпилептической активности.

В зависимости от частоты колебаний выделяется несколько ритмических рисунков электрической активности мозга – ритмов. Так, альфа–ритм, в большинстве случаев наиболее широко представленный в электроэнцефалограмме взрослого человека, имеет частотный диапазон от 8 до 13 колебаний в секунду и тесно связан в своем происхождении с системой зрительного восприятия. Поэтому он наиболее отчетлив он при закрытых глазах, то есть в состоянии ее максимального покоя, и лучше всего выражен в затылочных отделах, то есть там, где располагается высший отдел анализа зрительной информации. Наиболее высокочастотная часть электрической активности мозга, превышающая рамки альфа–ритма по частоте, именуется бета-активностью. Амплитуда ее, как правило, невысока и выражена она в противовес альфа-ритму, больше лобной и височной проекциях. Эта высокочастотная активность чаще всего рассматривается как признак активной работы многочисленных ансамблей нервных клеток. Альфа и бета активностью оканчивается ряд ритмических рисунков, характерных для взрослого человека в состоянии покоя, однако выделяются еще два варианта мозговой активности – тета и дельта. Тета-диапазон – более медленный в сравнении с альфа, от 7 до 5 колебаний в секунду. Дельта-волна еще медленнее, в секундном отрезке записи она может уместиться лишь 1-4 раза. Для такого рода медленной активности в состоянии бодрствования имеется в медицинской практике синоним – патологическая, то есть связанная с патологией, или – заболеванием, мозга. Ритмический рисунок мозговой активности существенно меняется с возрастом. Так, со второго полугодия сначала появляется, а затем постепенно начинает преобладать в картине активности альфа-ритм. Интересные метаморфозы происходят с медленной активностью. Патологической она считается только для взрослых в состоянии бодрствования. У детей наличие медленных волн в электроэнцефалограмме является нормальным, а вот представленность их отчетливо уменьшается с возрастомю. Большинство имеющихся экспериментальных данных говорит о том, что генез ЭЭГ определяется в основном электрической активностью коры больших полушарий головного мозга, а на уровне клеток – активностью ее пирамидных нейронов. У пирамидных нейронов выделяют два типа электрической активности. Импульсный разряд (потенциал действия) с длительностью около 1 мс и более медленное (градуальное ) колебание мембранного потенциалатормозные и возбуждающие постсинаптические потенциалы (ПСП). Тормозные ПСП пирамидных клеток генерируются в основном в теле нейрона, а возбуждающие ПСП – преимущественно в дендритах. Правда, на теле нейрона имеется определенное количество возбуждающих синапсов, и соответственно этому тело пирамидных нейронов(сома) способно генерировать также и возбуждающие ПСП. Длительность ПСП пирамидных клеток по крайней мере на порядок больше продолжительности импульсного разряда.

Изменение мембранного потенциала обусловливают возникновение в пирамидных клетках двух токовых диполей, отличающихся по цитологической локализации (рис3).

Один из них – соматический диполь с дипольным моментом . Он формируется при изменении мембранного потенциала тела нейрона; ток в диполе и во внешней среде протекает между сомой и дендритным стволом. Вектор дипольного момента при импульсном разряде или генерации в теле нейрона возбуждающего ПСП направлен от сомы вдоль дендритного ствола, а тормозной ПСП создает соматический диполь с противоположным направлением дипольного момента. Другой диполь, называемый дендритным, возникает в результате генерации возбуждающих ПСП на ветвлении апикальных дендритов в первом, плексиморным слое коры; ток в этом дипооле течет между дендритным стволом и указанным ветвлением. Вектор дипольного момента дендритного диполя имеет направление в сторону сомы вдоль дендритного ствола.

Генерация возбуждающего ПСП в районе дендритного ствола без ветвления приводит к появлению квадруполя, поскольку при этом от частично деполяризованного участка ток внутри клетки распространяется в двух противоположных направлениях, в результате чего формируются два диполя с противоположным напрвлением дипольных моментов . Так как диполи малы по сравнению с расстояниями до точек отведения ЭЭГ, внешним полем квадрупольного генератора пирамидных клеток можно пренебречь.

На (рис 4) изображена полученная пространственная структура электрического поля вдоль дендритного ствола и вокруг на расстоянии около 0,01 мм от продольной оси этого ствола. Оказалось, что внешнее поле пирамидного нейрона при импульсном разряде очень резко уменьшается вдоль дендритного ствола: уже на расстоянии около 0,3 мм потенциал падает практически до нуля. В противоположность этому внеклеточное ПСП характеризуется гораздо большей протяженностью (примерно на порядок), и, следовательно, при этой активности пирамидные клетки имеют гораздо более высокий дипольный момент. Это различие находит обьяснение при рассмотрении пассивных электрических свойств дендритного ствола.

По отношению к потенциалу действия ввиду его кратковременности

Рис.3. мембрана дендрита ведет себя как емкость, обладающая низким сопротивлением току высокой частоты. Поэтому ток, обусловленный импульсной активностью, циркулирует на небольшом расстоянии от тела клетки; емкость мембраны шунтирует отдаленные участки ствола. Действительно, по данным микроэлектродных исследований, внешнее электрическое поле пирамидных нейронов, генерируемое потенциалом действия, не обнаруживается рис.4.

уже на расстояниях выше 0,1 мм. таким образом, ЭЭГ должна в основном создаваться «медленным» соматическим и дендритным диполями, возникающими при генерации тормозных и возбуждающих постсинаптических потенциалов.

При изучении внешнего электрического поля мозга регистрируют и интерпретируют переменный сигнал ЭЭГ, а постоянную составляющую, как правило, не принимают во внимание. Как видно на(рис. 5), ЭЭГ фоновой активности мозга представляет собой весьма сложную зависимость разнсти потенциалов от времени и выглядит как совокупность случайных колебаний разности потенциалов. Для характеристики таких хаотических колебаний («шумов») используют параметры, известные из теории вероятности: среднюю величину и стандартное отклонение от средней величины. Чтобы наити , выделяют

участок на ЭЭГ, который разбивают на небольшие равные интервалы времени, и в конце каждого интервала (t i , t j , t m на рис. 74) определяют напряжение U (U i , U j , U m на рис. 74). Стандартное отклонение рассчитывают по обычной формуле: , (1.1)

в которой - среднеарифметическое значение разности потенциалов; - число отсчетов . При отведении ЭЭГ от твердой мозговой оболочки величина для фоновой активности составляет 50-100 мкВ.

Аналогичная характеристика (стандартное

Рис.5. отклонение) используется и для описания градуальной активности отдельных нейронов . При изучении ритмических ЭЭГ, характеризующихся определенной амплитудой и частотой изменение разности потенциала, показателем величины ЭЭГ может служить амплитуда этих колебаний.

В настоящее время в исследованиях ЭЭГ для моделирования электрической активности коры головного мозга рассматривают поведение совокупности токовых электрических диполей отделных нейронов. Предложено несколько таких моделей, позволяющих объяснить отделные особенности ЭЭГ. Рассмотрим модель М. Н. Жадина, которая на примере генеза ЭЭГ при отведении с твердой мозговой оболочки позволяет выявить общие закономерности возникновения суммарного внешнего электрического поля коры.

Основные полежения модели: 1) внешнее поле головного мозга в некоторой точке регистрации – интегрированное поле, генерируемое токовыми диполями нейронов коры; 2) генез ЭЭГ обусловен градуальной электрической активностью пирамидных нейронов; 3) активность разных пирамидных нейронов в определенной степени взаимосвязана (скорелирована); 4) нейроны распределены по коре равномерно и их дипольные моменты перпендикулярны к поверхности коры; 5) кора плоская, имеет конечную толчину , а ее остальные размеры бесконечны; со стороны черепа мозг ограничен плоской бесконечной токонепроводящей средой. Обоснование первых двух положений расмотрено выше. Остановимся на друних положениях модели.

Очень большое значение для генеза ЭЭГ имеет взаимосвязь электрической активности пирамидных нейронов. Если бы градуальное изменение мембранного потенциала во времени происходило в каждом нейроне совершенно независимо от остальных клеток, переменная составляющая потенциала их суммарного внешнего электрического поля была бы неболшой, так как увеличение потенциала за счет усиления активности одного нейрона в значительной мере скомпенсировалось бы хаотическим снижением активности других нейронов. Сравнительно высокая величина регистрируемой в опыте ЭЭГ заставляет предположить, что между активностями пирамидных нейронов существует положительная кореляция . Количественно это явление характеризуют коэффициентом корреляции . Этот коэффициент равен нулю при отсутствии связи между активностями индвидуальных нейронов и был бы равен единице, если бы изменение мембранного потенциала (дипольных моментов) клеток происходили совершенно синхронно. Наблюдаемое в действительности промежуточное значение свидетельствует о том, что деятельность нейронов синхронизована лишь частично.

Интегрированное поле множества диполей-нейронов было бы очень слабым при высоком уровне синхронизации, если бы векторы дипольных моментов элементарных источников тока были ориентированы в коре хаотически. В этом случае наблюдалась бы значительная взаимная компенсация полей индивидуальных нейронов. В действительности же, согласно цитологическим данным, дендритные стволы пирамидных клеток в новой коре (эти клетки составляют 75% от всех клеток коры) ориентированы практически одинакова, перпендикулярно поверхности коры. Поля, создаваемые диполями таких одинакова ориентированных клеток, не компенсируются, а складываются. Расчеты, произведенные на оснований всех этих положений, показали, что для ЭЭГ, отводимой от твердой мозговой оболочки,