Какие факторы способствуют росту и развитию бактерий в различных средах. Рост и размножение микроорганизмов. Способы и скорость размножения

Рост и размножение бактерий

Рост бактерий происходит в результате множества взаимосвязанных биохимических реакций, осуществляющих синтез клеточного материала, что приводит к увеличению количества всех химических компонентов. У бактерий различают индивидуальный рост бактериальной клетки и рост бактерий в популяции.

Индивидуальный рост бактерий . О нем судят по увеличению размеров отдельных особей. Скорость роста зависит от внешних условий и физиологического состояния самой клетки. При постоянных условиях рост осуществляется с постоянной скоростью. Палочковидные бактерии растут преимущественно в направлении длинной оси, поэтому соотношение между поверхностью клетки и ее объемом при росте клеток существенно не изменяется, и это создает постоянные условия снабжения каждой части клетки питательными веществами и кислородом. Кокки растут равномерно во всех направлениях, увеличивая размеры радиуса клетки, при этом относительная величина поверхности клетки падает, поэтому условия снабжения каждой части клетки становятся все более неблагоприятными. В промежутках между клеточными делениями бактерии имеют большие размеры, чем сразу после деления.

Размножение бактерий. Наиболее часто бактерии размножаются путем бинарного деления, когда из одной клетки образуется две, каждая из которых вновь делится. Процессу деления всегда предшествует репликация ДНК. Существует два типа деления – деление перетяжкой (перешнуровывание) и с помощью поперечной перегородки (рисунок 1.9).

Рисунок 1.9 – Деление бактерий

А - деление перетяжкой; Б - деление поперечной перегородкой; КС – клеточная стенка; ЦМ – цитоплазматическая мембрана; Н – нуклеоид; П – перетяжка

Деление перетяжкой (констрикция) сопровождается сужением клетки в месте ее деления, и в этом процессе принимают участие все слои клеточных оболочек. Выпячивание оболочек с обеих сторон внутрь клетки все более ее сужает и, наконец, делит на две. Так делятся многие грамотрицательным бактериям.

Деление с образованием поперечной перегородки присуще грамположительным бактериям. Однако у некоторых групп бактерий отмечена смена способов деления (тионовые бактерии, микобактерии). У шаровидных бактерий может образовываться несколько поперечных перегородок (тетракокки, сарцины).

Период от деления до деления называется клеточным циклом (онтогенез бактерий). Различают несколько типов вегетативного клеточного цикла: мономорфный – образуется только один морфологический тип клеток (например, бациллы), диморфный – два морфологических типа, полиморфный – несколько, каждый из которых характеризуется определенными и постоянными особенностями клеточного цикла (например, актиномицеты). При диморфном и полиморфном циклах различают дочерние и материнские клетки.

Почкование убактерий является разновидностью бинарного деления. Этот способ размножения присущ бактериям, имеющим диморфные или полиморфные клеточные циклы. Почкующимся бактериям присуща полярность клеток. Некоторые бактерии размножаются с помощью экзоспор (но не эндоспор!), фрагментами гиф (актиномицеты). Есть бактерии, у которых имеются половые ворсинки, или F-пили (англ. fertility –фертильность, плодовитость), обусловленные наличием полового фактора.

Бактерии характеризуются высокой скоростью размножения. Например, при благоприятных условиях кишечная палочка делится каждые 20…30 мин, за сутки из одной клетки проучится 2 72 (72 поколения). В условиях, исключающих гибель, такая биомасса составит 4720 т. Скорость размножения зависит от факторов внешней среды (температура, условия питания, влажность, реакция среды и др.) и от видовых особенностей бактерий. Высокая скорость размножения бактерий обеспечивает их сохранение на Земле даже в условиях массовой гибели. Сохранившиеся отдельные клетки размножаются и вновь дают поколение.

Рост бактерий в популяции. Популяция (фр. population – население) – это совокупность бактерий одного вида (чистая культура) или разных видов (смешанная ассоциация), развивающихся в ограниченном пространстве (например, в питательной среде). В бактериальной популяции постоянно происходит рост, размножение и отмирание клеток. Культивирование микроорганизмов в искусственных условиях бывает периодическим, непрерывным и синхронным.

Периодическое (стационарное) культивирование . Это культивирование происходит без притока и оттока питательной среды. Оно характеризуется классической кривой роста микроорганизмов, в которой выделяют отдельные фазы роста бактериальной популяции, отражающие общую закономерность роста и размножения клеток (рисунок 1.10).

Рисунок 1.10 – Кривая роста и развития бактериальной популяции

Лаг-фаза (англ. lag – отставание) начинается с момента посева бактерий в свежую питательную среду. Клетки адаптируются к данным условиям культивирования, растут, но не размножаются, они достигают максимальной скорости роста. Абсолютная и удельная скорость роста увеличиваются от нуля до максимально возможных значений.

Абсолютная скорость роста определяется отношением:

V = dx/dt, (1.1)

где V – прирост биомассы или числа клеток;.

х – биомасса или число клеток,

t – время.

Удельная скорость роста определяется по формуле:

µ = (dx/dt) ∙ 1/х, (1.2)

где µ - прирост биомассы е единицу времени на единицу биомассы,

х – начальная биомасса.

Продолжительность лаг-фазы зависит от биологических особенностей бактерий, возраста культуры, количества посевного материала, состава питательной среды, температуры, аэрации, рН и др. Одни бактерии обладают коротким периодом задержки роста, другие длинным. Чем моложе культура, тем период короче. Чем состав питательной среды ближе к тому, в котором выращивали микроорганизмы, тем короче лаг-фаза. Изменения в питательной среде приводят к изменению лаг-фазы, так как необходимо время для синтеза ферментов, либо повышения их активности. Таким образом, факторы задержки роста можно разделить на внешние (состав среды, рН, температура и др.) и внутренние (возраст культуры). Длительность фазы моет быть от нескольких минут до нескольких часов и даже дней. В этой фазе μ = 0.

Логарифмическая , или экспоненциальная , или лог-фаза , характеризуется максимальной скоростью деления бактерий. Экспоненциальный рост популяции описывается уравнением:

Х = Х о ∙ е μ max ∙ t , (1.3)

где Хи Х о - количество клеток (или биомасса) в конце и в начале опыта;

t– время опыта;

е– основание натурального логарифма;

μ max максимальная удельная скорость роста.

В период логарифмической фазы большинство клеток является физиологически молодыми, биохимически активными, а также наиболее чувствительными к неблагоприятным факторам внешней среды. В этой фазе μ = max.Эта фаза многостадийна, так как в начале ее бактерии растут в среде с избытком субстрата, затем концентрация его понижается, изменяется активность ферментов, возрастает содержание клеточных метаболитов. Кроме того, на рост бактерий оказывают влияние многие факторы: видовые особенности бактерий, характер питательной среды и концентрация ее отдельных компонентов, температура культивирования.

Фаза замедленного роста . Она объединяет две фазы – фазу линейного роста (μ = const) и фазу отрицательного ускорения . Фаза характеризуется в период линейного роста постоянной скоростью прироста биомассы (числа клеток). Затем при переходе в фазу отрицательного ускорения численность делящихся клеток уменьшается. Наступление фазы объясняется количественными изменениями состава питательной среды (потребление питательных веществ, накопление продуктов метаболизма).

Стационарная фаза характеризуется равновесием между погибающими и вновь образующимися клетками. Факторы, лимитирующие рост бактерий в предыдущей фазе, являются причиной возникновения стационарной фазы. Прироста биомассы нет (μ = 0).В этой фазе наблюдается максимальная величина биомассы и максимальная суммарная численность клеток. Эти максимальные величины называются урожаем , или выходом . Одним из ограничивающих факторов является максимальная концентрация клеток в единице объема питательной среды. У разных видов бактерий эта величина значительно варьирует. В стационарной фазе клетки характеризуются несбалансированным ростом (клеточные компоненты синтезируются с различной скоростью), уменьшением интенсивности обменных процессов, более высокой устойчивостью к физическим и химическим воздействиям.

Фаза отмирания (экспоненциальной гибели клеток ) характеризуется уменьшением числа живых клеток, возрастанием гетерогенности популяции (появляются клетки, не воспринимающие краситель, со слабым развитием муреинового слоя и др.). Процесс отмирания превалирует над делением (μ < 0).

Фаза выживания характеризуется наличием отдельных клеток, сохранивших в течение длительного времени жизнеспособность в условиях гибели большинства клеток популяции. Выжившие клетки характеризуются низкой активностью процессов метаболизма, изменением ультраструктуры клеток (мелкозернистая цитоплазма, отсутствие полирибосом и др.). Клетки более устойчивы к неблагоприятным условиям среды.

Таким образом, при стационарном культивировании микробные клетки все время находятся в изменяющихся условиях: сначала имеются в избытке все питательные вещества, затем постепенно наступает их недостаток, затем отравление клеток продуктами метаболизма.

Влияние лимитирующих факторов на скорость роста . Для нормального роста и развития микроорганизмов среда должна содержать необходимые элементы питания, иметь соответствующую рН, температуру и т.д. Факторы, ограничивающие рост культуры, называются лимитирующими . Характерная особенность роста популяции микроорганизмов – зависимость удельной скорости роста от концентрации субстрата. Эта зависимость выражается уравнением Моно , представляющим собой гиперболическую функцию:

μ = μ max ∙ S/(S + K S), (1.4)

где μ – удельная скорость роста;

μ max - максимальная удельная скорость роста;

S – концентрация субстрата;

K S - константанасыщения, численно равная такой концентрации субстрата, которая обеспечивает скорость роста, соответствующую половине значенияμ max .

По мере потребления питательных веществ среда обогащается продуктами обмена, которые также лимитируют рост культуры. Наиболее общий случай влияния концентрации субстрата и продуктов обмена на скорость роста популяции микроорганизмов нашел отражение в модели Н.Д.Иерусалимского:

μ = μ max ∙ S/(S + K S) ∙ К Р / (К Р / + Р), (1.5)

где Р – концентрация продуктов обмена;

К Р - константа, численно равная такой концентрации продуктов обмена, при которой скорость роста замедляется вдвое.

Анализ этого уравнения показывает, что при условии К Р >> Р, когда величиной Р можно пренебречь. скорость роста ограничена только концентрацией субстрата. Если S >> K S , то скорость роста лимитирована накоплением продуктов обмена

Непрерывное культивирование. Если в емкость, где находится бактериальная популяция, непрерывно подавать свежую питательную среду и одновременно с такой же скоростью выводить культуральную жидкость, содержащую бактериальные клетки и продукты метаболизма, то получается непрерывное культивирование. Регулируя скорость проточной среды, можно управлять ростом бактериальной популяции, например, удлинять логарифмическую или стационарную фазу на любое необходимое время. Непрерывное культивирование осуществляется в специальных приборах - хемостатах и турбидостатах.

Хемостаты . Рост бактерий регулируется концентрацией субстрата. Поддерживая постоянную концентрацию одного из необходимых субстратов (источник азота или углерода), путем регулирования скорости протока среды, можно сбалансировать скорость роста культуры. Скорость изменения величины биомассы клеток в хемостате равна разности между скоростью прироста биомассы и скоростью выноса ее из культиватора. Плотность популяции остается постоянной, если μ=D (удельная скорость роста равна коэффициенту разбавления), т.е. потеря клеток в результате вымывания и прирост их в результате размножения уравновешивается.

Турбидостаты .Принцип работы основан на регулировании скорости потока среды плотностью популяции. Плотность популяции контролируется фотоэлементом, соединенным с реле, регулирующим подачу среды. Когда плотность популяции достигает заданного уровня, реле срабатывает и в культиватор поступает свежая среде. В результате концентрация клеток уменьшается до определенного уровня и затем автоматически отключается подача среды.

Турбидостатный контроль может быть основан на других метолах определения биомассы, либо продуктов, образующихся в процессе роста бактерий (например, рН-статный способ управления скорости потока, использование оксистата– управление скоростью потока по скорости потребления кислорода и др.).

Непрерывное культивирование микроорганизмов используется для изучения их физиологии, биохимии, генетики и др., а также широко используется в микробиологической промышленности.

Синхронное культивирование. Синхронные культуры – это культуры, в которых некоторое время все клетки делятся одновременно (синхронно) за счет одинаковой готовности к делению всех особей. Синхронизация достигается физическими и химико-биологическими методами. Физические методы - это температурное воздействие, дифференциальное центрифугирование или дифференциальное фильтрование и др. Химико-биологические методы: вынужденное голодание бактерий, выращивание бактерий на неполноценных средах с последующим переносом их в полноценные среды. Синхронные культуры используются для генетических и цитологических исследований, для изучения синтеза отдельных клеточных компонентов в процессе деления бактерий.

Для того чтобы изучать микроорганизмы, определять этиологические факторы инфекционных заболеваний, заниматься вопросами профилактики и лечения инфекционных заболеваний и решать многие другие вопросы, связанные с микроорганизмами, необходимо иметь их в достаточном количестве, а это значит - создавать все условия для нормального роста и размножения микроорганизмов.

Под термином «размножение» микробов подразумевается способность их к самовоспроизведению, увеличению количества особей.

Размножение микроорганизмов происходит путем поперечного деления, почкованием, образования спор, репродукции.

Рост микроорганизмов означает увеличение массы микробов в результате синтеза клеточного материала и воспроизведения всех клеточных компонентов и структур.

О бактериях, спирохетах, актиномицетах, грибах, риккетсиях, микоплазмах, простейших, хламидиях говорят, что они размножаются, а вирусы и фаги (вирусы микробов) – репродуцируются.

Размножение микроорганизмов соответствует определенным закономерностям. Скорость деления микроорганизмов различна, она зависит от вида микроба, возраста культуры, особенностей естественной и искусственной питательной среды, температуры, концентрации углекислого газа и многих других факторов.

В процессе размножения микроорганизмы на различных этапах претерпевают морфологические и физиологические изменения (по форме, размерам, окрашиваемости, биохимической активности, чувствительности к физическим и химическим факторам и пр.).

Микроорганизмы обладают возрастной изменчивостью, т.е. особи изменяются на разных стадиях роста, созревания и старения. Эти изменения наблюдаются в нормальном цикле индивидуального развития микроорганизма, который зависит от природы организма, от сложности его строения и последовательности в развитии.

Наиболее простым циклом развития среди микроорганизмов обладают бактерии. Размножаются они простым поперечным делением в различных плоскостях. В зависимости от этого клетки могут располагаться беспорядочно, гроздями, цепочками, пакетами, попарно, по четыре и т.д.

Характерной чертой бактерий, отличающей их от многочисленных животных и растений, является их необыкновенная скорость размножения.

Каждая бактериальная клетка в среднем в течение получаса претерпевает деление, что обусловлено усиленным обменом веществ, скоростью, с которой питательный материал поступает внутрь клетки.

Фактором, тормозящим размножение бактерий, является истощение питательного субстрата и отравление окружающей среды продуктами распада.

У бактерий различают восемь основных фаз размножения.

1. Исходная стационарная фаза, которая представляет собой период времени один – два часа от момента посева бактерий на питательную среду. В этой фазе размножение не происходит

2. Фаза задержки размножения (лаг – фаза), в течение которой размножение бактерий происходит очень медленно, а скорость их роста увеличивается. Продолжительность второй фазы около двух часов.

3. Фаза длится пять – шесть часов. Третья фаза характеризуется максимальной скоростью деления, уменьшением размеров клеток.

4. Фаза отрицательного ускорения (продолжается около двух часов). Скорость размножения бактерий снижается, число делящихся клеток уменьшается.

5. Стационарная фаза, длящаяся около двух часов. Число новых бактерий почти равно числу отмерших особей.

6. Фаза ускорения гибели клеток (длится около трех часов).

7. Фаза логарифмической гибели клеток (длится около пяти часов), при которой гибель клеток происходит с постоянной скоростью

8. Фаза уменьшения скорости отмирания. Оставшиеся в живых особи, переходят в состояние покоя.

Продолжительность фаз размножения не является постоянной величиной. Она может быть различной в зависимости от вида микроорганизмов и условий культивирования.

Цикл развития кокковидных бактерий сводится к росту клетки и последующему ее делению. Палочковидные аспорогенные бактерии в молодом возрасте растут, достигают максимума величины, затем делятся на две дочерние клетки, которые повторяют тот же цикл. У бацилл и клостридий в цикл развития включается при определенных условиях процесс спорообразования.

Спирохеты и риккетсии, как и бактерии, размножаются путем бинарного деления.

Среди микоплазм способностью размножаться обладают все элементарные тела сферической или овоидной формы. В процессе развития на элементарном теле появляется несколько нитевидных выростов, в которых формируются сферические тела. Постепенно нити становятся тоньше и образуются цепочки с четко выраженными сферическими тельцами. Затем происходит деление нитей на фрагменты и освобождение сферических телец.

Размножение некоторых микоплазм происходит путем отпочкования дочерних клеток от более крупных шаровидных тел. Поперечным делением микоплазмы размножаются, если процессы деления микоплазм идут синхронно с репликацией ДНК нуклеоида. При нарушении синхронности образуются нитевидные многонуклеоидные формы, в последующем делящиеся на кокковидные клетки.

Актиномицеты и грибы имеют две различные стадии развития: стадию вегетативного роста, при которой характерным является образования мицелия и стадию образования спор, формирующихся на спороносцах.

Важной особенностью актиномицетов и грибов является значительное разнообразие способов их размножения. Для них характерны вегетативное, бесполое и половое размножение.

Вегетативное размножение осуществляется путем деления на фрагменты гиф с последующим образованием отдельных палочковидныхи кокковидных клеток.

Бесполое размножение происходит вегетативным путем (рост фрагментов гиф или их отдельных клеток) и при помощи более или менее специализированных органов размножения (спор и конидий). Наиболее частый, бесполый, путь размножения проявляется в образовании экзогенных и эндогенных спор. Экзоспоры или конидии образуются на концах плодоносящих гиф, но заключены внутри общего мешочка – спорангия. Гифы, несущие спорангии, называются спорангионосцами. Спорангионосцы могут быть прямыми, волнистыми, спиральными.

Половое размножение происходит при помощи специальных органов – аскоспор, базидиоспор, образованию которых предшествует половой процесс. По биологическому назначению споры актиномицетов и грибов бывают покоящиеся, служащие для сохранения вида в течение определенного периода и служащие для быстрого размножения.

Споры актиномицетов и грибов образуются каждой особью в большом количестве, так как в отличие от спор бактерий служат, в основном, целям размножения. Они менее устойчивы к факторам окружающей среды, чем споры бактерий.

У простейших, так же как у актиномицетов и грибов, наряду с размножением путем деления существует и половой процесс.

Хламидии, вирусы и фаги имеют своеобразные циклы развития.

Размножение хламидий начинается с проникновения элементарных телец в чувствительную тканевую клетку путем эндоцитоза. Эти тельца в вакуоле клетки превращаются в вегетативные формы, называемые инициальными или ретикулярными тельцами, которые обладают способностью делиться. Ретикулярные тельца имеют пластинную клеточную стенку, а в цитоплазме – рыхло расположенные ядерные фибриллы и многочисленные рибосомы. После многократного деления ретикулярные тельца превращаются в промежуточные формы, из которых развивается новое поколение элементарных телец. Весь цикл развития хламидий длится 40 – 48 часов и заканчивается формированием микроколонии хламидий в цитоплазме клетки – хозяина.

После разрыва стенки вакуоли и полного разрушения клетки – хозяина, микроколонии хламидий, оказавшись за пределами целой клетки, распадается на самостоятельные элементарные тельца, и цикл проникновения хламидий в клетку с последующим их размножением повторяется.

Репродукция вирусов характеризуется последовательностью отдельных стадий.

1. Стадия адсорбции. Вирионы адсорбируются на поверхностных структурах клетки. При этом происходит взаимодействие комплементарных структур вириона и клетки, которые называются рецепторами.

2. Стадия проникновения вириона в клетку хозяина. Пути внедрения вирусов в чувствительные к ним клетки неодинаковы. Многие вирионы проникают в клетку путем пиноцитоза, когда образующаяся пиноцитарная вакуоль «втягивает» вирион внутрь клетки. Некоторые вирусы проникают в клетку прямым путем через ее оболочку.

3. Стадия разрушения внешней оболочки и капсида вириона при помощи протеолитических ферментов клетки – хозяина. У одних вирионов процесс разрушения их оболочки начинается еще на стадии адсорбции, у других – в пиноцитарной вакуоле, у третьих – непосредственно в цитоплазме клетки при участии тех же протеолитических ферментов.

4. Стадия синтеза вирусных белков и репликации нуклеиновых кислот. После полного или частичного освобождения вирусной нуклеиновой кислоты начинается процесс синтеза вирусных белков и репликация нуклеиновых кислот.

5. Стадия сборки или морфогенез вириона. Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их нуклеиновой кислоты, что обеспечивается самосборкой белковых молекул вокруг нуклеиновой кислоты. У одних вирусов этот процесс происходит в цитоплазме, у других – в ядре клетки хозяина. У сложноорганизованных вирусов, имеющих внешнюю оболочку, дальнейшая сборка происходит в цитоплазме во время выхода их из клетки.

6. Стадия выхода вирионов из клетки – хозяина. Ряд сложных вирусов выходят из клетки – хозяина, при этом клетки в течение некоторого времени сохраняют жизнеспособность, а потом погибают. Простые вирионы выходят из клетки через образовавшиеся в ее оболочке отверстия, клетка – хозяин погибает, не сохраняя в течение какого – то времени жизнеспособность.

В некоторых случаях репродукция вирионов в клетках может происходить в течение многих месяцев и даже лет. Вирусы выделяются через клеточную оболочку. При делении таких клеток вирионы передаются дочерним клеткам, в свою очередь начинающим продуцировать вирусные частицы.

Существует три типа взаимодействия вируса с клеткой: продуктивный, абортивный и вирогенный.

Продуктивный тип взаимодействия заключается в образовании новых вирионов.

Абортивный тип взаимодействия может внезапно прерваться в стадии репликации вирусной нуклеиновой кислоты или синтеза вирусных белков, или морфогенеза вирионов.

Вирогенный тип характеризуется встраиванием (интеграцией) вирусной нуклеиновой кислоты в ДНК клетки, которая обеспечивает синхронность репликации вирусной и клеточной ДНК.

При репродукции фага также происходит адсорбция его на поверхности клетки (1 стадия) в результате взаимодействия аминогрупп белков, локализованных в периферической части хвостового отростка фага, и отрицательно заряженных карбоксильных групп на поверхности бактериальной клетки.

Различают обратимые и необратимые фазы адсорбции. Обратимая фаза характеризуется тем, что фиксированные фаги можно отделить от клетки путем энергичного помешивания или резко уменьшить концентрацию ионов. Освободившиеся фаги при сохраняют свою жизнеспособность.

В период второй необратимой фазы адсорбции фаг не отделяется от тела микробной клетки. Процесс адсорбции длится несколько минут. Под влиянием фермента, находящегося в хвостовом отростке фага, в теле микробной клетки на месте прикрепления фага образуется отверстие, через которое внутрь клетки проникает ДНК фага. Оболочка фага остается снаружи (2 стадия).

Некоторые фаги вводят свою нуклеиновую кислоту в клетку без предварительного механического повреждения клеточной стенки. В наступивший после проникновения в клетку нуклеиновой кислоты фага латентный период, осуществляется биосинтез фаговой нуклеиновой кислоты и белков капсида фага.

Происходит синтез ферментов, необходимых для репликации фаговой нуклеиновой кислоты и структурных белков фага (3 стадия).

В четвертой стадии происходит заполнение фаговой нуклеокислотой пустотелых фаговых частиц и формирование зрелых фагов. Осуществляется морфогенез фага.

В конце латентного периода происходит лизис зараженных микробных клеток и выход зрелых фаговых частиц (5 стадия).

Считают, что адсорбция фага длится 40 минут, латентный период – 75 минут. Весь цикл взаимодействия фага с микробной клеткой продолжается немногим больше трех часов.

Внедрение фага в микробную клетку не всегда сопровождается ее лизисом. Нередко взаимодействие фага с микробной клеткой ведет к образованию лизогенных культур.

По характеру взаимодействия с микробной клеткой различают умеренные и вирулентные фаги. Состояние лизогении вызывается умеренными фагами. Лизогенные микробные клетки являются устойчивыми к вирулентным фагам. Вирулентные фаги обуславливают формирование новых фагов и лизис микробной клетки.

В отличие от многоклеточных организмов, в одноклеточных организмах рост и размножения (деление клетки) тесно связанные. Бактерии дорастают к определенному размеру, после чему проводят процесс деления, форму бесполого размножения. При оптимальных условиях бактерии могут растить и делиться чрезвычайно быстро, до одного деления каждое 9,8 минут для определенных видов бактерий. При делении клетки создаются две генетически идентичных дочерних клетки. Некоторые бактерии, хотя тоже размножаются без полов, формируют более сложные воспроизводящие структуры, которые облегчают распространение новых дочерних клеток. Примеры включают создание плодовых тел миксобактериями, создание воздушных гиф представителями рода Streptomyces и почкование. Почкование означает формирование выступления, которое позднее отделяется, формируя отдельную клетку.

В лабораторных условиях бактерии по обыкновению выращивают, используя твердую или редкую среду. В качестве твердого среды используются чашки Петр с пластом агара, который содержит питательные вещества. Такие чашки используются для получения штаммов бактерий. Однако, редкая среда по обыкновению используется для измерения скорости роста или получение определенных объемов клеток. Иногда используются отборочные среды, (среды с добавлением антибиотику) для выделения и идентификации отдельных штаммов бактерий.

Большинство лабораторных методов роста используют высокие уровне питательных веществ для получения больших количеств клеток. Однако в естественных условиях количество питательных веществ ограниченная, что означает, что бактерии не могут размножаться бесконечно. Это ограничение привело к созданию бактериями разных стратегий роста. Некоторые организмы могут растить чрезвычайно быстро, когда питательные вещества становятся доступными, например, формирование цветение воды (за счет роста клеток цианобактерий), которые часто происходят в озерах летом. Много организмов адаптируются к бедным и агрессивным окружениям, например, путем производства антибиотиков представителями рода Streptomyces и другими, тем самым не давая роста конкурирующим микроорганизмам. Часто бактерии сотрудничают, формируя биопленки и меняя скорость роста благодаря ощущению кворума. Эти взаимоотношения могут быть существенными для роста всей группы организмов (синтрофия).

Рост бактерий обычно включает три фазы. Когда популяция бактерий попадается к богатому на питательные вещества окружению, которое позволяет рост, клеткам нужен определенное время, чтобы приспособиться к новому окружению. Первая фаза роста, фаза медленного роста , является фазой такого приспособления. Эта фаза характеризуется высокой скоростью биосинтеза ферментов и активного транспорта. За ней следует фаза экспоненциального роста, который характеризуется быстрому экспоненциальным ростом количества бактерий. Скоростью роста полагает время удвоения бактерий на протяжении этой фазы. Последняя фаза роста — стационарная фаза, которая вызвана истощением питательных веществ. Клетки сокращают свою метаболическую деятельность и потребляют несущественные клеточные белки. Стационарная фаза — это переход от быстрого роста к стрессовому состоянию, которое характеризуется увеличением экспрессии генов, которые принимают участие в ремонте ДНК и антиоксидантном метаболизме.

Бактерии самая древняя форма жизни на земле. Появились на планете около 3,8-3,6 миллионов лет назад. Агрессивные климатические условия сделали их выносливыми и стойкими к выживанию. Древнейшим существом будут цианобактерии.

Именно они поспособствовали накоплению в атмосфере кислорода. Наш организм состоит из многочисленных их видов. Различают полезные и вредные типы. Обитают везде: в воде, в воздухе, в человеке и животных существах, в слоях почвы.

Объем колоний зависит не только от строения, но и от того как происходит деление бактерий. Строение примитивное. Аппарат представляется слизистой капсулой или мембраной. Микроорганизм состоит из всего-то одной живой клетки.

В цитоплазме нет митохондрий и пластид. У большинства микробов есть жгутики и усики, с помощью них они и передвигаются по крови, сосудам и тканям. Являются прокариотами, то есть в них нет ядра.

Это значит, что микрочастицы ДНК скапливаются в определенной части цитоплазмы. Имеют название нуклеотиды. Нуклеотиды своеобразный род ядра, в нем то и содержится информация. ДНК хранит сведения в сжатом виде. При ее разворачивании длина достигает 1 мм.

Размножение бактерий происходит путем деления.

Следует знать, что бактерии размножаются только при наличии благоприятных факторов, каких рассмотрим ниже.

Для их роста нужны:

  1. свет;
  2. температура;
  3. наличие кислорода;
  4. влажность;
  5. фактор щелочности и кислотности;

У медиков интерес вызывает температурные условия. Для того, чтобы клетки делились требуется определенная температура. Некоторые классы при очень низкой впадают в состояние анабиоза или спячки, другие же только при высокой не могут продолжить свой рост и разрушаются.

Если одних можно убить кипячением воды, другие прекрасно себя чувствуют, также и с замораживанием. Среди этого предела есть средние условия при которых может осуществляться максимальное развитие с высокой скоростью. Нужная температурная фаза от 23 до 30 градусов, для течения патогенной флоры требуется 38 градусов.

В этой среде плодятся бактериальные простейшие. В идеальных условия прокариоты способны производить 34 триллиона потомков за сутки. Состояние взросления происходит где-то за 20 минут. К счастью живут они не долго, несколько минут или часов.

Что нужно для некоторых микроорганизмов?


Стафилококковая группа нуждается в аргинине и лецитине. Стрептококки в фосфолипидах. Шигеллам, корине бактериям нужна подпитка никотиновая кислота. Золотистый стафилококк, пневмококк, бруцеллез не сможет без витамина Б1, а вот прототрофы сами синтезируют необходимое.

Пути созревания


Как говорилось ранее развитие простейших осуществляется путем деления.

Оно бывает:

  • простым;
  • почкованием;
  • конъюгацией, половым путем;

Простой путь

При первом методе бактерии могут плодиться равновеликим поперечным делением. Материнские клетки после удваивания нитей ДНК и органелл образуют две части, а именно дочерние клетки. Генетический код сформирован аналогично материнскому.

Они как бы клонируют сами себя. В течение суток из одной клеточки выходит 70 поколений. Если предположить, что все они могли жить, масса составила более 5 тонн. Конечно такое невозможно в природе.

Вегетативный этап

Или проще почкование обозначается тем, что существа выращивают на одном из полюсов вторую почку, то есть себя. При ответвлении наступает разрыв нитей ДНК. Именно гетероцисты участвуют в процессе. К такому методу прибегают цианобактерии и колониальные породы.

Таким образом прокариоты могут вырастить до 4 почек, после чего наступает старение и гибель. Кокковые колонии отделяясь свободно идут в рост.

Спорообразование


Есть раздвоение спорами.

Каким образом происходит?

Бациллы репродуцируют себя таким образом при наступлении неблагоприятных условий внешней и внутренней среды. Внутри споры делается особа среда, приостанавливается механизм жизни, уменьшается уровень воды. Если бацилла попала в такое состояние ей не страшен холод, жара, излучения разной этиологии, химические средства.

Как только улучшаются факторы выходят молодые прокариоты. Цикл становится очень длительным. Науке даже известны случаи когда ученые находили простейших, которым десятки, а то и сотни лет.

Половой путь


Конъюгация происходит у бактерий живущих преимущественно в человеческом организме, либо теле животного. Здесь две формы соприкасаются друг с другом и начинается обмен данными. Называется генетическая рекомбинация, образование новых видов.

Половым способом размножаются бактерии кишечной палочки и остальные грамположительные и грамотрицательные типы. Если отсутствует истинное направление то такой обмен между ними является полезным и мочь поспособствовать развитию устойчивости к антибиотикам и другим лекарственным препаратам.

Инциститация


Еще один путь защиты от агрессивных обстоятельств преобразование в цист. Цисты обозначают пузырьки в толстой оболочке. Находится в таком положении бациллы могут очень долго. Даже 200 градусов по Цельсию не уничтожит их. Далее при положительных причинах они выходят наружу делясь бинарно.

Так, что приемы приумножения возбудителей подчиняются внешней среде. Недостаток воды, большое содержание кислорода в воздухе, лишение высокопитательных микроэлементов. Низкие или высокие перепады температур заставляют прибегнуть к спорообразованию, инцистированию.

Степень бактериальной популяции


Живя в благоприятных условиях клетки находятся на исходной стадии, начальной. Средняя продолжительность 1-2 часа. Задержание роста, занимает примерно пару часов. При логарифмическом периоде бациллы могут размножаться в быстром порядке, пик достигается через 6 часов.

Отрицательное ускорение, когда истощаются питательные запасы микроэлементов и веществ. Стационарная ступень, погибшие особи заменяются новыми уже через два часа. Этап ускоренной гибели, бациллы гибнут через каждые 3 часа. Логарифмический фазис, отмечается постоянная смерть, составляет 6 часов.

Снижение скорости смерти, на этом моменте оставшиеся живые клеточки переходят в состояние покоя.

Многоклеточная стадия


Одноклеточная фаза способна делать все функции организма, на это не влияют соседствующие рядом микроорганизмы. Одноклеточные образовывают клеточные агрегаты, они скрепляются слизью.

Часто появляется скопление бацилл в одну ветвь. Так микобактерии развивают цисты, получается своеобразный обмен. Явление служит пред посылом к многоклеточному формированию. К ним относятся цианобактерии, актиномицеты.

Каким требованиям должны отвечать особи:

  1. агрегированностью клеток;
  2. разделением свойств между ними;
  3. установка должного контакта между особями;

У нитчатых особей структура описана в клеточной стенке, создает взаимосвязь между индивидуумами. Обмен у бактерий происходит веществами и энергией. Некоторые нитчатые помимо вегетативных особей содержат дифференциальные гетероцисты или акинеты.

Локализация

В зависимости от разбивки бациллы имеют определенные виды скоплений:

  • шаровидные;
  • спиралевидные;

Первые обнаруживаются в паре или по одному, это диплококки, микрококки, стафилококки. Могут выглядеть как веточки винограда, цепочки. Спиралевидные, разбросаны в хаотичном порядке, к ним причисляются лептоспирозы, вибрио.

Рост бактерий - это увеличение количества, массы и размеров всех микробной клетки, начинающийся сразу после ее деления. Рост неразрывно связан с размножением.

Размножение у бактерий процесссамовоспроизведения микробной клетки. Он начинается сразделения ДНК нуклеоида на две дочерние нити, каждая из которых затем достраивается комплементарной нитью, при этом одновременно происходит образование двух дочерних клеток (полуконсервативный способ). Бактерии размножаются поперечным делением срезким увеличением количества клеток в популяции, процесс повторяется через одинаковые промежутки времени (от нескольких минут до нескольких суток), являясь индивидуальной генетической характеристикой микробного вида. При делении могут образовываться либо две одинаковые клетки, либо две асимметричные (полиморфные).

Бактерии отличаются высоким темпом размножения на различных питательных средах, который характеризуется временем генерации. Это время между двумя делениями клетки, проходящее от момента появления клетки до момента деления (например, время генерации кишечной палочки - 20 мин, возбудителя туберкулеза - 14 час). Скорость размножения зависит от вида бактерий и условий культивирования (химического состава питательной среды, её агрегатного состояния, рН, температуры, аэрации, газового состава, наличия питательных веществ и стимуляторов роста и т. д.). При размножении бактерий на плотных питательных средах, они образуют колонии - потомство одной клетки, визуально определяемое на (или в) питательной среде. Изолированные колонии являются скоплениями микробов одного вида, и, как правило, одного клона.

Внешний вид колоний у некоторых бактерий может быть весьма своеобразным, являясь типичным для некоторых микроорганизмов. Так, например, колонии возбудителя сибирской язвы сравнивают с «гривой льва» или «головой медузы», колонии возбудителя чумы похожи на «кружевной платок» и т.д.

Для характеристики колоний, растущих на питательных средах, применяется ряд стандартных параметров - макроскопическая характеристика.

По форме колонии бывают правильные - округлые, или неправильные - амебовидные и ризоидные, напоминающие переплетающиеся корни деревьев. В зависимости от размеров выделяют колонии точечные (диаметр меньше 1 мм), мелкие (диаметр I - 2 мм), средние (диаметр 2 - 4 мм) и крупные (диаметр 4 - 6 мм и более).

Цвет определяется видом пигмента (белый, желтый, красный и др. – рис 25 - приложение). Пигментированные колонии, например, встречаются у стафилокока (белый, лимонно-жёлтый или золотистый), у сарцин цвет пигмента жёлтый, у бактерий рода Serratia красный, у дрожжеподобных грибов Candida albicans белый. Многие патогенные бактерии пигмента не образуют - их колонии прозрачные или опалесцирующие.


По консистенции колонии бактерий чаще бывают мягкие, слизистые или плотные, крошковидные. По характерукраев различают ровные края в виде четко выраженной линии и неровные - фестончатые и волнистые. Поверхность колоний бывает матовая или блестящая с глянцем, сухая или влажная, гладкая или шероховатая. Гладкие колонии обозначают буквой S (smooth - гладкие), шероховатые буквой R (rough - шероховатый).

При выращивании бактерий на жидкой питательной среде наблюдается последовательная смена отдельных фаз в размножении бактериальной популяции(рис. 9):

1. Начальная фаза (лаг-фаза). Размножения клеток не происходит; микробы адаптируются к питательной среде, увеличиваются в размерах, накапливают ферменты, начинается репликация ДНК. В конце фазы начинается медленное размножение микробов.

2. Экспоненциальная фаза (лог-фаза) характеризуется максимальной скоростью размножения, при этом число бактерий увеличивается в геометрической прогрессии.

3. Стационарная фаза, при которой наблюдается равновесие между количеством вновь образовавшихся клеток и количеством погибших.

4. Фаза отмирания. В эту фазу происходит гибель клеток.

Величину биомассы определяют по ее сухой массе, а также содержанию бактериального азота, белка, ДНК, фосфора.